scholarly journals Introducing gradient severe shot peening as a novel mechanical surface treatment

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erfan Maleki ◽  
Sara Bagherifard ◽  
Okan Unal ◽  
Michele Bandini ◽  
Gholam Hossein Farrahi ◽  
...  

AbstractShot peening is widely used for improving mechanical properties especially fatigue behavior of metallic components by inducing surface hardening, compressive residual stresses and surface grain refinement. In air blast shot peening, projection pressure and surface coverage (an index of peening duration) have been considered as major controlling process parameters; the combination of these parameters plays a critical role in the beneficial effects of shot peening. Generally in severe shot peening aimed at obtaining surface grain refinement, constant values of pressure are considered with different peening durations. Considering very high peening duration, however, the phenomenon of over shot peening, which can be identified with the formation of surface defects could occur. The present study introduces a novel shot peening treatment, here called gradient severe shot peening (GSSP) that instead of using constant projection pressure, implements gradually increasing or decreasing pressures. The gradual increase of the projection pressure acts as a pre-hardening stage for the following higher projection pressure boosting the potential of the material to tolerate the sequential impacts and thus become less prone to the formation of surface defects. The results of the experiments indicate significant fatigue life improvement obtained for GSSP treated specimens compared to the standard treatment with constant pressure. GSSP avoids the detrimental effects of over-peening, while maintaining the beneficial effects of surface nano-crystallization, surface hardening and compressive residual stresses. The notable difference in fatigue strength enhancement for GSSP treated material can be also attributed to the modulated surface morphology with lower surface roughness compared to a standard shot peening treatment with the same exposure time.

2013 ◽  
Vol 768-769 ◽  
pp. 519-525 ◽  
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

The paper deals with the effect of different shot peening (SP) treatment conditions on the ENAW 7075-T651 aluminium alloy. Suitable residual stress profile increases the applicability and life cycle of mechanical parts, treated by shot peening. The objective of the research was to establish the optimal parameters of the shot peening treatment of the aluminium alloy in different precipitation hardened states with regard to residual stress profiles in dynamic loading. Main deformations and main residual stresses were calculated on the basis of electrical resistance. The resulting residual stress profiles reveal that stresses throughout the thin surface layer of all shot peened specimens are of compressive nature. The differences can be observed in the depth of shot peening and the profile of compressive residual stresses. Under all treatment conditions, the obtained maximum value of compressive residual stress ranges between -200 MPa and -300 MPa at a depth between 250 μm and 300 μm. Comparison of different temperature-hardened aluminium alloys shows that changes in the Almen intensity values have greater effect than coverage in the depth and profile of compressive residual stresses. Positive stress ratio of R=0.1 was selected. Wöhler curves were determined in the areas of maximum bending loads between 30 - 65 % of material's tensile strength, measured at thinner cross-sections of individual specimens. The results of material fatigue testing differ from the level of shot peening on the surface layer.


2013 ◽  
Vol 433-435 ◽  
pp. 1898-1901
Author(s):  
Li Juan Cao ◽  
Shou Ju Li ◽  
Zi Chang Shangguan

Shot peening is a manufacturing process intended to give components the final shape and to introduce a compressive residual state of stress inside the material in order to increase fatigue life. The modeling and simulation of the residual stress field resulting from the shot peening process are proposed. The behaviour of the peened target material is supposed to be elastic plastic with bilinear characteristics. The results demonstrated the surface layer affected by compressive residual stresses is very thin and the peak is located on the surface.


Author(s):  
Rajesh Prasannavenkatesan ◽  
David L. McDowell

Using a three-dimensional crystal plasticity model for cyclic deformation of lath martensitic steel, a simplified scheme is adopted to simulate the effects of shot peening on inducing initial compressive residual stresses. The model is utilized to investigate the subsequent cyclic relaxation of compressive residual stresses in shot peened lath martensitic gear steel in the high cycle fatigue (HCF) regime. A strategy is identified to model both shot peening and cyclic loading processes for polycrystalline ensembles. The relaxation of residual stress field during cyclic bending is analyzed for strain ratios Rε=0 and −1 for multiple realizations of polycrystalline microstructure. Cyclic microplasticity in favorably oriented martensite grains is the primary driver for the relaxation of residual stresses in HCF. For the case of Rε=−1, the cyclic plasticity occurs throughout the microstructure (macroplasticity) during the first loading cycle, resulting in substantial relaxation of compressive residual stresses at the surface and certain subsurface depths. The initial magnitude of residual stress is observed to influence the degree (percentage) of relaxation. Describing the differential intergranular yielding is necessary to capture the experimentally observed residual stress relaxation trends.


2010 ◽  
Vol 89-91 ◽  
pp. 53-58
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

In the paper two aluminium alloys, i.e. 6082 and 7075, which were cold hardened by shot peening under different conditions, are treated. Surface hardening was carried out with S170 steel shot of the same diameter, particle hardness being 56 HRC. Other conditions were the operating pressure, mass flow, which provide different Almen intensities. The hardened layer was described by surface integrity. Macroscopic and microscopic analyses consisted in analyses of hardened profiles of hardness, and residual stresses in the thin surface layer. Research results indicated that there were significant differences among the characteristics chosen to describe surface integrity and that they had an important influence on the final condition of the surface layer. With too severe settings of the peening parameters, the surface properties got worse because of damages, which resulted in crack initiation and growth of the existing cracks.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 470 ◽  
Author(s):  
Xuanpei Wu ◽  
Zeyou Qi ◽  
Zhiling Zhou ◽  
Hongcheng Zhang ◽  
Weijie Wu ◽  
...  

The present study proposes a novel method, i.e., combined severe shot peening (SP) and reversion annealing treatment, to grain-refine the surface layers of 304L austenitic stainless steel. Steel specimens were shot-peened at 0.7 MPa for 30 min, introducing 40% vol. α′ martensite, and then were annealed at 700 or 800 °C for different durations (30 s). As annealing reversed α′ martensite to austenite, the obtained surface layers consist of fully austenitic ultrafine grains. The smallest grain size obtained is about 500 nm at the top surface. SP elevates the microhardness to more than 500 HV. Although the grain-refined surface layers produced by the combined method are not as hard as that treated by only SP, they are harder (e.g., the specimen annealed at 700 °C for 30 s using a heating rate of 50 °C/s exhibited a peak microhardness of 400 HV) than the untreated surface layer (225 HV) due to grain refinement. Moreover, due to the absence of α′ martensite, they have higher corrosion resistance in H2SO4 solution than that treated by only SP.


Author(s):  
Douglas J. Hornbach ◽  
Jeremy E. Scheel

Stress corrosion cracking (SCC) and corrosion fatigue (CF) of 12% Cr stainless steel components can lead to reduced availability of steam turbines (ST). Significant operation and maintenance (O&M) costs are required to protect against CF and SCC in both aging and new higher efficiency ST systems. Shot peening has been used to reduce the overall operating tensile stresses, however corrosion pits, foreign object damage (FOD), and erosion can penetrate below the relatively shallow residual compression providing initiation sites for SCC and CF. A means of reliably introducing a deep layer of compressive residual stresses in critical ST components will greatly reduce O&M costs by improving CF life, increasing damage tolerance, reducing SCC susceptibility, and extending the service life of components. Low plasticity burnishing (LPB) is an advanced surface enhancement process providing a means of introducing compressive residual stresses into metallic components for enhanced fatigue, damage tolerance, and SCC performance. LPB processing can be applied as a repair process during scheduled overhauls or on new production components. High cycle fatigue tests were conducted on Type 410 stainless steel, a common alloy used in critical ST components, to compare the corrosion fatigue benefits of LPB to shot peening. Samples were tested in an active corrosion medium of 3.5% NaCl solution. Mechanical or accelerated corrosion damage was placed in test samples to simulate foreign object damage, pitting damage and water droplet erosion prior to testing. High cycle fatigue and residual stress results are shown. Compression from LPB was much deeper than the damage providing a nominal 100X improvement in fatigue life compared to the shallow compression from SP. Life extension from LPB offers significant O&M cost savings, improved reliability, and reduced outages for ST power generators.


Sign in / Sign up

Export Citation Format

Share Document