scholarly journals In search of different categories of abstract concepts: a fMRI adaptation study

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesca Conca ◽  
Eleonora Catricalà ◽  
Matteo Canini ◽  
Alessandro Petrini ◽  
Gabriella Vigliocco ◽  
...  

AbstractConcrete conceptual knowledge is supported by a distributed neural network representing different semantic features according to the neuroanatomy of sensory and motor systems. If and how this framework applies to abstract knowledge is currently debated. Here we investigated the specific brain correlates of different abstract categories. After a systematic a priori selection of brain regions involved in semantic cognition, i.e. responsible of, respectively, semantic representations and cognitive control, we used a fMRI-adaptation paradigm with a passive reading task, in order to modulate the neural response to abstract (emotions, cognitions, attitudes, human actions) and concrete (biological entities, artefacts) categories. Different portions of the left anterior temporal lobe responded selectively to abstract and concrete concepts. Emotions and attitudes adapted the left middle temporal gyrus, whereas concrete items adapted the left fusiform gyrus. Our results suggest that, similarly to concrete concepts, some categories of abstract knowledge have specific brain correlates corresponding to the prevalent semantic dimensions involved in their representation.

2006 ◽  
Vol 18 (10) ◽  
pp. 1644-1653 ◽  
Author(s):  
S. M. Brambati ◽  
D. Myers ◽  
A. Wilson ◽  
K. P. Rankin ◽  
S. C. Allison ◽  
...  

Neuropsychological studies suggest that knowledge about living and nonliving objects is processed in separate brain regions. However, lesion and functional neuroimaging studies have implicated different areas. To address this issue, we used voxel-based morphometry to correlate accuracy in naming line drawings of living and nonliving objects with gray matter volumes in 152 patients with various neurodegenerative diseases. The results showed a significant positive correlation between gray matter volumes in bilateral temporal cortices and total naming accuracy regardless of category. Naming scores for living stimuli correlated with gray matter volume in the medial portion of the right anterior temporal pole, whereas naming accuracy for familiarity-matched nonliving items correlated with the volume of the left posterior middle temporal gyrus. A previous behavioral study showed that the living stimuli used here also had in common the characteristic that they were defined by shared sensory semantic features, whereas items in the nonliving group were defined by their action-related semantic features. We propose that the anatomical segregation of living and nonliving categories is the result of their defining semantic features and the distinct neural subsystems used to process them.


1998 ◽  
Vol 10 (6) ◽  
pp. 766-777 ◽  
Author(s):  
C. J. Mummery ◽  
K. Patterson ◽  
J. R. Hodges ◽  
C. J. Price

Studies of patients with brain damage suggest that specific brain regions may be differentially involved in representing/processing certain categories of conceptual knowledge. With regard to the dissociation that has received the most attention—between the domains of living things and artifacts—a debate continues as to whether these category-specific effects reflect neural implementation of categories directly or some more basic properties of brain organization. The present positron emission tomography (PET) study addressed this issue by probing explicitly for differential activation associated with written names of objects from the domains of living things or artifacts during similarity judgments about different attributes of these objects. Subjects viewed triads of written object names and selected one of two response words as more similar to a target word according to a specified perceptual attribute (typical color of the objects) or an associative attribute (typical location of the objects). The control task required a similarity judgment about the number of syllables in the target and response words. All tasks were performed under two different stimulus conditions: names of living things and names of artifacts. Judgments for both domains and both attribute types activated an extensive, distributed, left-hemisphere semantic system, but showed some differential activation-particularly as a function of attribute type. The left temporooccipito-parietal junction showed enhanced activity for judgments about object location, whereas the left anteromedial temporal cortex and caudate nucleus were differentially activated by color judgments. Smaller differences were seen for living and nonliving domains, the positive findings being largely consistent with previous studies using objects; in particular, words denoting artifacts produced enhanced activation in the left posterior middle temporal gyrus. These results suggest that, within a distributed conceptual system activated by words, the more prominent neural distinction relates to type of attribute.


2008 ◽  
Vol 20 (10) ◽  
pp. 1799-1814 ◽  
Author(s):  
Klaus Hoenig ◽  
Eun-Jin Sim ◽  
Viktor Bochev ◽  
Bärbel Herrnberger ◽  
Markus Kiefer

Traditionally, concepts are assumed to be situational invariant mental knowledge entities (conceptual stability), which are represented in a unitary brain system distinct from sensory and motor areas (amodality). However, accumulating evidence suggests that concepts are embodied in perception and action in that their conceptual features are stored within modality-specific semantic maps in the sensory and motor cortex. Nonetheless, the first traditional assumption of conceptual stability largely remains unquestioned. Here, we tested the notion of flexible concepts using functional magnetic resonance imaging and event-related potentials (ERPs) during the verification of two attribute types (visual, action-related) for words denoting artifactual and natural objects. Functional imaging predominantly revealed crossover interactions between category and attribute type in visual, motor, and motion-related brain areas, indicating that access to conceptual knowledge is strongly modulated by attribute type: Activity in these areas was highest when nondominant conceptual attributes had to be verified. ERPs indicated that these category-attribute interactions emerged as early as 116 msec after stimulus onset, suggesting that they reflect rapid access to conceptual features rather than postconceptual processing. Our results suggest that concepts are situational-dependent mental entities. They are composed of semantic features which are flexibly recruited from distributed, yet localized, semantic maps in modality-specific brain regions depending on contextual constraints.


2021 ◽  
pp. 1-29
Author(s):  
Kangyu Jin ◽  
Zhe Shen ◽  
Guoxun Feng ◽  
Zhiyong Zhao ◽  
Jing Lu ◽  
...  

Abstract Objective: A few former studies suggested there are partial overlaps in abnormal brain structure and cognitive function between Hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear. Methods: 21 HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent Resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ. Results: Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL) and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG and left paracentral lobule but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MCCB in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients. Conclusion: our results suggested the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.


2021 ◽  
pp. 216770262110302
Author(s):  
M. Justin Kim ◽  
Maxwell L. Elliott ◽  
Annchen R. Knodt ◽  
Ahmad R. Hariri

Past research on the brain correlates of trait anger has been limited by small sample sizes, a focus on relatively few regions of interest, and poor test–retest reliability of functional brain measures. To address these limitations, we conducted a data-driven analysis of variability in connectome-wide functional connectivity in a sample of 1,048 young adult volunteers. Multidimensional matrix regression analysis showed that self-reported trait anger maps onto variability in the whole-brain functional connectivity patterns of three brain regions that serve action-related functions: bilateral supplementary motor areas and the right lateral frontal pole. We then demonstrate that trait anger modulates the functional connectivity of these regions with canonical brain networks supporting somatomotor, affective, self-referential, and visual information processes. Our findings offer novel neuroimaging evidence for interpreting trait anger as a greater propensity to provoked action, which supports ongoing efforts to understand its utility as a potential transdiagnostic marker for disordered states characterized by aggressive behavior.


2012 ◽  
Vol 32 (4) ◽  
pp. 731-744 ◽  
Author(s):  
James FM Myers ◽  
Lula Rosso ◽  
Ben J Watson ◽  
Sue J Wilson ◽  
Nicola J Kalk ◽  
...  

This positron emission tomography (PET) study aimed to further define selectivity of [11C]Ro15-4513 binding to the GABARα5 relative to the GABARα1 benzodiazepine receptor subtype. The impact of zolpidem, a GABARα1-selective agonist, on [11C]Ro15-4513, which shows selectivity for GABARα5, and the nonselective benzodiazepine ligand [11C]flumazenil binding was assessed in humans. Compartmental modelling of the kinetics of [11C]Ro15-4513 time-activity curves was used to describe distribution volume ( VT) differences in regions populated by different GABA receptor subtypes. Those with low α5 were best fitted by one-tissue compartment models; and those with high α5 required a more complex model. The heterogeneity between brain regions suggested spectral analysis as a more appropriate method to quantify binding as it does not a priori specify compartments. Spectral analysis revealed that Zolpidem caused a significant VT decrease (~10%) in [11C]flumazenil, but no decrease in [11C]Ro15-4513 binding. Further analysis of [11C]Ro15-4513 kinetics revealed additional frequency components present in regions containing both α1 and α5 subtypes compared with those containing only α1. Zolpidem reduced one component (mean ± s.d.: 71% ± 41%), presumed to reflect α1-subtype binding, but not another (13% ± 22%), presumed to reflect α5. The proposed method for [11C]Ro15-4513 analysis may allow more accurate selective binding assays and estimation of drug occupancy for other nonselective ligands.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Rasmus Rydbirk ◽  
Jonas Folke ◽  
Kristian Winge ◽  
Susana Aznar ◽  
Bente Pakkenberg ◽  
...  

Abstract Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain samples from two brain regions from Alzheimer’s disease (AD), Parkinson’s disease (PD), Multiple System Atrophy, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori validation of RGs for RT-qPCR studies.


2019 ◽  
Author(s):  
Jennifer M Rodd

This chapter focuses on the process by which stored knowledge about a word’s form (orthographic or phonological) maps onto stored knowledge about its meaning. This mapping is made challenging by the ambiguity that is ubiquitous in natural language: most familiar words can refer to multiple different concepts. This one-to-many mapping from form to meaning within the lexicon is a core feature of word-meaning access. Fluent, accurate word-meaning access requires that comprehenders integrate multiple cues in order to determine which of a word’s possible semantic features are relevant in the current context. Specifically, word-meaning access is guided by (i) distributional information about the a priori relative likelihoods of different word meanings and (ii) a wide range of contextual cues that indicate which meanings are most likely in the current context.


2018 ◽  
Author(s):  
Maria Montefinese ◽  
Erin Michelle Buchanan ◽  
David Vinson

Models of semantic representation predict that automatic priming is determined by associative and co-occurrence relations (i.e., spreading activation accounts), or to similarity in words' semantic features (i.e., featural models). Although, these three factors are correlated in characterizing semantic representation, they seem to tap different aspects of meaning. We designed two lexical decision experiments to dissociate these three different types of meaning similarity. For unmasked primes, we observed priming only due to association strength and not the other two measures; and no evidence for differences in priming for concrete and abstract concepts. For masked primes there was no priming regardless of the semantic relation. These results challenge theoretical accounts of automatic priming. Rather, they are in line with the idea that priming may be due to participants’ controlled strategic processes. These results provide important insight about the nature of priming and how association strength, as determined from word-association norms, relates to the nature of semantic representation.


Author(s):  
XIAOFENG YU ◽  
ZHILONG ZHU ◽  
SHUZHAN ZHENG ◽  
JIAN JIANG ◽  
JUANJUAN JIANG ◽  
...  

Subjective cognitive decline (SCD), characterized by self-perceived subtle cognitive impairment ahead of the appearance of explicit and measurable cognitive deficits, is regarded as the preclinical manifestation of the pathological change continuum of Alzheimer’s disease (AD). We were committed to exploring the amyloid and glucose metabolic signatures related to imminent brain metabolic changes in SCD subjects. This study included 39 subjects (mean age = 71.9 years; 14 males and 25 females) diagnosed with SCD disease and 39 gender-matched healthy controls (HCs) (mean age = 75.2; 16 males and 23 females) with brain [18F] fluorodeoxyglucose positron emission tomography (PET) images and [18F] florbetapir PET images. The standardized uptake value ratios (SUVRs) of PET images within the regions of interest (ROIs) were calculated. Inter-group SUVR differences were assessed by two-sample [Formula: see text]-testing and receiver operating characteristic curve (ROC) analyses. A generalized linear model (GLM) was employed to evaluate the correlations between amyloid and FDG uptake. Compared with HCs, SCD subjects showed significantly increased amyloid SUVR, as well as significantly increased glucose SUVR in the olfactory, amygdala, thalamus, heschl gyrus, superior and middle temporal gyrus and temporal pole (all [Formula: see text]). The amyloid SUVR of thalamus was found to have a better ROC result (area under the curve (AUC): 0.77, 95% confidence interval (CI): 0.66–0.86) in the HC group, as was the case with the glucose SUVR of the middle temporal gyrus (AUC: 0.83, 95% CI: 0.73–0.91). There were significant positive correlations between amyloid and glucose SUVRs ([Formula: see text]). The amyloid SUVR of the thalamus showed a significantly better main effect (odd ratio [Formula: see text] 2.91, 95% CI: 1.44–6.7, [Formula: see text]), and the glucose SUVR of the heschl gyrus indicated an enhanced main effect (odd ratio [Formula: see text] 5.08, 95% CI: 1.86–18.15, [Formula: see text]). SCD subjects demonstrated significant amyloid accumulation and glucose hypermetabolism in specific brain regions, and amyloid pathology overlapped with regions of glucose abnormality. These findings may advance the understanding of imminent pathological changes in the SCD stage and help to provide clinical guidelines for interventional management.


Sign in / Sign up

Export Citation Format

Share Document