scholarly journals Molecular determinants of response kinetics of mouse M1 intrinsically-photosensitive retinal ganglion cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanghui Sheng ◽  
Lujing Chen ◽  
Xiaozhi Ren ◽  
Zheng Jiang ◽  
King-Wai Yau

AbstractIntrinsically-photosensitive retinal ganglion cells (ipRGCs) are non-rod/non-cone retinal photoreceptors expressing the visual pigment, melanopsin, to detect ambient irradiance for various non-image-forming visual functions. The M1-subtype, amongst the best studied, mediates primarily circadian photoentrainment and pupillary light reflex. Their intrinsic light responses are more prolonged than those of rods and cones even at the single-photon level, in accordance with the typically slower time course of non-image-forming vision. The short (OPN4S) and long (OPN4L) alternatively-spliced forms of melanopsin proteins are both present in M1-ipRGCs, but their functional difference is unclear. We have examined this point by genetically removing the Opn4 gene (Opn4−/−) in mouse and re-expressing either OPN4S or OPN4L singly in Opn4−/− mice by using adeno-associated virus, but found no obvious difference in their intrinsic dim-flash responses. Previous studies have indicated that two dominant slow steps in M1-ipRGC phototransduction dictate these cells’ intrinsic dim-flash-response kinetics, with time constants (τ1 and τ2) at room temperature of ~ 2 s and ~ 20 s, respectively. Here we found that melanopsin inactivation by phosphorylation or by β-arrestins may not be one of these two steps, because their genetic disruptions did not prolong the two time constants or affect the response waveform. Disruption of GAP (GTPase-Activating-Protein) activity on the effector enzyme, PLCβ4, in M1-ipRGC phototransduction to slow down G-protein deactivation also did not prolong the response decay, but caused its rising phase to become slightly sigmoidal by giving rise to a third time constant, τ3, of ~ 2 s (room temperature). This last observation suggests that GAP-mediated G-protein deactivation does partake in the flash-response termination, although normally with a time constant too short to be visible in the response waveform.

1996 ◽  
Vol 36 (7) ◽  
pp. 913-931 ◽  
Author(s):  
Tsaiyao Yeh ◽  
Barry B. Lee ◽  
Jan Kremers

2001 ◽  
Vol 18 (1) ◽  
pp. 137-145 ◽  
Author(s):  
MASAMI WATANABE ◽  
NAOKO INUKAI ◽  
YUTAKA FUKUDA

We have previously reported that a small number of retinal ganglion cells (RGCs) of adult cats survive 2 months after transection of the optic nerve (ON) and that α cells have the greatest ability to survive among different types of RGCs (Watanabe et al., 1995). Here we report the time course of RGC survival within 15 days after ON transection using retrograde labeling with DiI injected into the bilateral lateral geniculate nuclei of cats. The density of DiI-labeled RGCs in the central retina as well as in the periphery did not change until day 3 after ON transection, then decreased rapidly, to 43% of the original density on day 7, and falling to 19% by day 14. We then intracellularly injected Lucifer yellow into the DiI-labeled RGCs to examine the difference in the time course between surviving α and β cells. Similar to the density change in total surviving RGCs, the proportion of surviving β cells did not change until day 3, then decreased rapidly to 65% of the original density on day 4, falling to 12% by day 14. By contrast, 64% of α cells survived for 14 days after axotomy. Analysis of regression lines for survival time courses indicated that death of β cells was characterized with a rapid period phase from day 3 to day 7 after axotomy whereas that of α cells lacked it. Axon-like sprouting from surviving β cells was first recognized in the nerve fiber layer on day 3, and were later more conspicuous.


Sign in / Sign up

Export Citation Format

Share Document