scholarly journals Probabilistic comparison of gray and white matter coverage between depth and surface intracranial electrodes in epilepsy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daria Nesterovich Anderson ◽  
Chantel M. Charlebois ◽  
Elliot H. Smith ◽  
Amir M. Arain ◽  
Tyler S. Davis ◽  
...  

AbstractIn this study, we quantified the coverage of gray and white matter during intracranial electroencephalography in a cohort of epilepsy patients with surface and depth electrodes. We included 65 patients with strip electrodes (n = 12), strip and grid electrodes (n = 24), strip, grid, and depth electrodes (n = 7), or depth electrodes only (n = 22). Patient-specific imaging was used to generate probabilistic gray and white matter maps and atlas segmentations. Gray and white matter coverage was quantified using spherical volumes centered on electrode centroids, with radii ranging from 1 to 15 mm, along with detailed finite element models of local electric fields. Gray matter coverage was highly dependent on the chosen radius of influence (RoI). Using a 2.5 mm RoI, depth electrodes covered more gray matter than surface electrodes; however, surface electrodes covered more gray matter at RoI larger than 4 mm. White matter coverage and amygdala and hippocampal coverage was greatest for depth electrodes at all RoIs. This study provides the first probabilistic analysis to quantify coverage for different intracranial recording configurations. Depth electrodes offer increased coverage of gray matter over other recording strategies if the desired signals are local, while subdural grids and strips sample more gray matter if the desired signals are diffuse.

2021 ◽  
Author(s):  
Daria Nesterovich Anderson ◽  
Chantel M Charlebois ◽  
Elliot H Smith ◽  
Amir M Arain ◽  
Tyler S Davis ◽  
...  

Objective. The objective of this study is to quantify the coverage of gray and white matter during intracranial electroencephalography in a cohort of epilepsy patients with surface and depth electrodes. Methods. We included 65 patients with strip electrodes (n=12), strip and grid electrodes (n=24), strip, grid, and depth electrodes (n=7), or depth electrodes only (n=22) from the University of Utah spanning 2010-2020. Patient-specific imaging was used to generate probabilistic gray and white matter maps and atlas segmentations. The gray and white matter coverage was quantified based on spherical volumes centered on electrode centroids, with radii ranging from 1-15 mm, along with detailed finite element models of local electric fields Results. Gray matter coverage was highly dependent on the chosen radius of influence (RoI). Using a 2.5 mm RoI, depth electrodes covered more gray matter than surface electrodes; however, surface electrodes covered more gray matter at RoI larger than 4 mm. White matter coverage was greatest for depth electrodes at all RoIs, which is noteworthy for studies involving stimulation mapping. Depth electrodes were able to record significantly more gray matter from the amygdala and hippocampus than subdural electrodes. Significance. This study provides the first probabilistic analysis to quantify gray and white matter coverage for multiple categories of intracranial recording configurations. Depth electrodes may offer increased per contact coverage of gray matter over other recording strategies if the desired signals are local to the contact, while subdural grids and strips can sample more gray matter if the desired signals are more diffuse.


2019 ◽  
Author(s):  
Niranjan Khadka ◽  
Xijie Liu ◽  
Hans Zander ◽  
Jaiti Swami ◽  
Evan Rogers ◽  
...  

AbstractObjectiveComputational current flow models of spinal cord stimulation (SCS) are widely used in device development, clinical trial design, and patient programming. Proprietary models of varied sophistication have been developed. An open-source model with state-of-the-art precision would serve as a standard for SCS simulation.ApproachWe developed a sophisticated SCS modeling platform, named Realistic Anatomically Detailed Open-Source Spinal Cord Stimulation (RADO-SCS) model. This platform consists of realistic and detailed spinal cord and ancillary tissues anatomy derived based on prior imaging and cadaveric studies. Represented tissues within the T9-T11 spine levels include vertebrae, intravertebral discs, epidural space, dura, CSF, white-matter, gray-matter, dorsal and ventral roots and rootlets, dorsal root ganglion, sympathetic chain, thoracic aorta, epidural space vasculature, white-matter vasculature, and thorax. As an exemplary, a bipolar SCS montage was simulated to illustrate the model workflow from the electric field calculated from a finite element model (FEM) to activation thresholds predicted for individual axons populating the spinal cord.Main ResultsCompared to prior models, RADO-SCS meets or exceeds detail for every tissue compartment. The resulting electric fields in white and gray-matter, and axon model activation thresholds are broadly consistent with prior stimulations.SignificanceThe RADO-SCS can be used to simulate any SCS approach with both unprecedented resolution (precision) and transparency (reproducibility). Freely available online, the RADO-SCS will be updated continuously with version control.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii51-iii51
Author(s):  
Z Bomzon ◽  
C Wenger ◽  
H K Hershkovich ◽  
C Tempel Brami ◽  
M Giladi

Abstract BACKGROUND Electrical properties (EPs) of brain tissue, specifically brain tumors, crucially determine the field distribution of Tumor Treating Fields (TTFields), an anti-mitotic treatment approved for glioblastoma multiforme (GBM). Due to the correlation of TTFields efficacy and field intensity at the tumor region, the knowledge of EPs in each patient is of great importance for patient-specific planning of treatment. Water content electrical properties tomography (wEPT) is a non-invasive imaging technique using water content (WC) maps obtained from rapidly acquired and processed conventional sequences to estimate the EPs of brain tissue at 128 MHz. The WC maps of this approach are constructed from two spin echo sequences similar to a T1 and a PD image. Following previous studies in rat tumor models demonstrating promising wEPT mapping of EPs in the brain at 200, this study examines the feasibility of this approach in human GBM patients. MATERIAL AND METHODS For three patients of the EF-14 trial population, we divided T1 and PD images pixel-by-pixel to obtain the image ratio. Using a transfer function, WC maps were generated and maps of the electrical conductivity σ and the relative permittivity ε r at 200 kHz were calculated with two different equations. RESULTS The median value of estimated WC remains similar in healthy brain tissues among all patients, ~73.5% in the white matter, ~82% in the gray matter. The median values of wEPT-estimated σ at 200 kHz in the white matter is ~0.09 S/m and in the gray matter ~0.18 S/m, corresponding median values of ε r at 200 kHz are ~2100 and ~3000 in white and gray matter respectively. Contrary, in the tumor the spread between the median values of WC and EPs is much higher. Stating the most important findings, in the necrosis median WC are 90.3%, 92.3%, 85.2% in patients 1–3 respectively with corresponding median σ values of 0.494, 0.657, 0.25 S/m. In the enhancing tumor the spread of median WC is even higher (67.2%, 83.6%, 85.5%), yet lower spread but also very heterogeneous median σ values of 0.075 S/m, 0.208, 0.259 S/m are estimated with wEPT. CONCLUSION Our results demonstrate the adaption of wEPT for mapping of WC and EPs at 200 kHz in three human GBM patients. In contrast to the vastly irregular tumor tissue, our estimations in healthy brain tissue are similar between patients and in accordance with EPs experimentally measured during our animal experiments and consistent with reported values in the literature. Hence, wEPT is a promising, fast technique based on regular MRI that might help patient-specific treatment planning of TTFields therapy, although the mapping of tumor tissue needs further confirmation in a greater population and investigations of EPs of excised tumor tissue samples should be conducted.


2018 ◽  
Author(s):  
Ahmet S. Asan ◽  
Sinan Gok ◽  
Mesut Sahin

AbstractTranscranial electrical stimulation (tES) is rapidly becoming an indispensable clinical tool with its different forms. Animal data are crucially needed for better understanding of the underlying mechanisms of tES. For reproducibility of results in animal experiments, the electric fields (E-Fields) inside the brain parenchyma induced by the injected currents need to be predicted accurately. In this study, we measured the electrical fields in the rat brain perpendicular to the brain surface, i.e. vertical electric field (VE-field), when the stimulation electrode was placed over the skin, skull, or dura mater through a craniotomy hole. The E-field attenuation through the skin was a few times larger than that of the skull and the presence of skin substantially reduced the VE-field peak at the cortical surface near the electrode. The VE-field declined much quicker in the gray matter underneath the pial surface than it did in the white matter, and thus the large VE-fields were contained mostly in the gray matter. The transition at the gray/white matter border caused a significant peak in the VE-field, as well as at other local inhomogeneties. A conductivity value of 0.57 S/m is predicted as a global value for the whole brain by matching our VE-field measurements to the field profile given by analytical equations for volume conductors. Finally, insertion of the current return electrode into the shoulder, submandibular, and hind leg muscles had virtually no effects on the measured E-field amplitudes in the cortex underneath the epidural electrodes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Patrick Greene ◽  
Adam Li ◽  
Jorge González-Martínez ◽  
Sridevi V. Sarma

For epileptic patients requiring resective surgery, a modality called stereo-electroencephalography (SEEG) may be used to monitor the patient's brain signals to help identify epileptogenic regions that generate and propagate seizures. SEEG involves the insertion of multiple depth electrodes into the patient's brain, each with 10 or more recording contacts along its length. However, a significant fraction (≈ 30% or more) of the contacts typically reside in white matter or other areas of the brain which can not be epileptogenic themselves. Thus, an important step in the analysis of SEEG recordings is distinguishing between electrode contacts which reside in gray matter vs. those that do not. MRI images overlaid with CT scans are currently used for this task, but they take significant amounts of time to manually annotate, and even then it may be difficult to determine the status of some contacts. In this paper we present a fast, automated method for classifying contacts in gray vs. white matter based only on the recorded signal and relative contact depth. We observe that bipolar referenced contacts in white matter have less power in all frequencies below 150 Hz than contacts in gray matter, which we use in a Bayesian classifier to attain an average area under the receiver operating characteristic curve of 0.85 ± 0.079 (SD) across 29 patients. Because our method gives a probability for each contact rather than a hard labeling, and uses a feature of the recorded signal that has direct clinical relevance, it can be useful to supplement decision-making on difficult to classify contacts or as a rapid, first-pass filter when choosing subsets of contacts from which to save recordings.


Author(s):  
Steven M. Le Vine ◽  
David L. Wetzel

In situ FT-IR microspectroscopy has allowed spatially resolved interrogation of different parts of brain tissue. In previous work the spectrrscopic features of normal barin tissue were characterized. The white matter, gray matter and basal ganglia were mapped from appropriate peak area measurements from spectra obtained in a grid pattern. Bands prevalent in white matter were mostly associated with the lipid. These included 2927 and 1469 cm-1 due to CH2 as well as carbonyl at 1740 cm-1. Also 1235 and 1085 cm-1 due to phospholipid and galactocerebroside, respectively (Figs 1and2). Localized chemical changes in the white matter as a result of white matter diseases have been studied. This involved the documentation of localized chemical evidence of demyelination in shiverer mice in which the spectra of white matter lacked the marked contrast between it and gray matter exhibited in the white matter of normal mice (Fig. 3).The twitcher mouse, a model of Krabbe’s desease, was also studied. The purpose in this case was to look for a localized build-up of psychosine in the white matter caused by deficiencies in the enzyme responsible for its breakdown under normal conditions.


Sign in / Sign up

Export Citation Format

Share Document