The Late Hauterivian Faraoni ‘Oceanic Anoxic Event’: an update

2014 ◽  
Vol 185 (6) ◽  
pp. 359-377 ◽  
Author(s):  
François Baudin ◽  
Laurent Riquier

AbstractMost oceanic anoxic events (OAEs) took place during the middle part of the Cretaceous and the Late Hauterivian probably recorded the first anoxic event within this peculiar time interval. The so-called Faraoni event (~131 Ma) was initially defined as a short-lived anoxic event restricted to the Mediterranean domain. Since its recognition, numerous geochemical studies were conducted on the Faraoni event and new occurrences of this event were suggested outside the Tethyan domain. This paper presents an update on the Late Hauterivian Faraoni event and examines if this event agrees with the definition of OAEs.

2020 ◽  
Vol 157 (10) ◽  
pp. 1622-1642
Author(s):  
MA Rogov ◽  
EV Shchepetova ◽  
VA Zakharov

AbstractThe Late Jurassic – earliest Cretaceous time interval was characterized by a widespread distribution of dysoxiс–anoxiс environments in temperate- and high-latitude epicontinental seas, which could be defined as a shelf dysoxic–anoxic event (SDAE). In contrast to black shales related to oceanic anoxic events, deposits generated by the SDAE were especially common in shelf sites in the Northern Hemisphere. The onset and termination of the SDAE was strongly diachronous across different regions. The SDAE was not associated with significant disturbances of the carbon cycle. Deposition of organic-carbon-rich sediment and the existence of dysoxic–anoxic conditions during the SDAE lasted up to c. 20 Ma, but this event did not cause any remarkable biotic extinction. Temperate- and high-latitude black shale occurrences across the Jurassic–Cretaceous boundary have been reviewed. Two patterns of black shale deposition during the SDAE are recognized: (1) Subboreal type, with numerous thin black shale beds, bounded by sediments with very low total organic carbon (TOC) values; and (2) Boreal type, distinguished by predominantly thick black shale successions showing high TOC values and prolonged anoxic–dysoxic conditions. These types appear to be unrelated to differences in accommodation space, and can be clearly recognized irrespective of the thickness of shale-bearing units. Black shales in high-latitude areas in the Southern Hemisphere strongly resemble Boreal types of black shale by their mode of occurrence. The causes of this SDAE are linked to long-term warming and changes in oceanic circulation. Additionally, the long-term disturbance of planktonic communities may have triggered overall increased productivity in anoxia-prone environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sinjini Sinha ◽  
A. D. Muscente ◽  
James D. Schiffbauer ◽  
Matt Williams ◽  
Günter Schweigert ◽  
...  

AbstractKonservat-Lagerstätten—deposits with exceptionally preserved fossils—vary in abundance across geographic and stratigraphic space due to paleoenvironmental heterogeneity. While oceanic anoxic events (OAEs) may have promoted preservation of marine lagerstätten, the environmental controls on their taphonomy remain unclear. Here, we provide new data on the mineralization of fossils in three Lower Jurassic Lagerstätten—Strawberry Bank (UK), Ya Ha Tinda (Canada), and Posidonia Shale (Germany) —and test the hypothesis that they were preserved under similar conditions. Biostratigraphy indicates that all three Lagerstätten were deposited during the Toarcian OAE (TOAE), and scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) show that each deposit contains a variety of taxa preserved as phosphatized skeletons and tissues. Thus, despite their geographic and paleoenvironmental differences, all of these Lagerstätten were deposited in settings conducive to phosphatization, indicating that the TOAE fostered exceptional preservation in marine settings around the world. Phosphatization may have been fueled by phosphate delivery from climatically-driven sea level change and continental weathering, with anoxic basins acting as phosphorus traps.


2019 ◽  
Author(s):  
Sebastian Stumpf ◽  
Faviel A. López-Romero ◽  
Jürgen Kriwet

The Early Jurassic represents a crucial time interval in the evolutionary history of elasmobranchs, because the Toarcian witnessed a first major diversification, suggesting a profound reorganization of ecological niches of chondrichthyans, probably accompanied by a subsequent diversity decline of hybodontiforms within marine environments. Potential factors underlying the Toarcian elasmobranch radiation event not only include evolutionary novelties in ecological adaptations of swimming, feeding, and reproduction, but also abiotic factors such as increasing seawater temperatures and variations in eustatic sea level associated with the Toarcian Oceanic Anoxic Event (T-OAE). These events might have played an important role in the Toarcian elasmobranch diversification event by regulating diversity dynamics through the availability of higher speciation and dispersal rates. In attempt to better understand macroevolutionary patterns and processes of Jurassic chondrichthyans, we analysed the generic diversity of Pliensbachian to Aalenian elasmobranchs and hybodontiforms and explored their response to the T-OAE. In doing so, we calculated the estimated mean standing diversities (EMSD) using 10 time bins of approximately 2 Myr duration and evaluated the relationships between EMSD and variations in both seawater temperature and eustatic sea level to test whether these parameters affect the observed diversity patterns. Our data indicate profoundly different diversity dynamics of elasmobranchs and hybodontiforms. The EMSD is low in Pliensbachian to Aalenian hybodontiforms, indicating an evolutionary stasis. Conversely, a constant taxonomic increase in elasmobranchs is recorded, spanning from the Pliensbachian to the end of the Toarcian, before reaching a diversity plateau in the Aalenian. These divergent patterns might suggest that hybodontiforms were not competing with elasmobranchs, but more likely are the result of still existing taxonomic misconceptions of Jurassic hybodontiforms, mainly caused by morphological characters that are either ambiguous or broadly distributed among these anatomically rather conservative chondrichthyans. Notwithstanding this, our results indicate that variations in seawater temperature and eustatic sea level changes associated with the T-OAE were not the primary drivers underlying the observed elasmobranch diversity patterns. Therefore, it might be possible that the diversification of elasmobranchs was opportunistic, benefitting from the appearance and subsequent radiation of new food resources, probably in response of enhanced surface productivity during the T-OAE. This hypothesis, however, needs to be tested, pending the inclusion of other time-equivalent marine vertebrate groups in future diversity analyses. Moreover, a detailed re-evaluation of Jurassic hybodontiforms will contribute to our understanding of chondrichthyan diversity dynamics across the T-OAE.


2004 ◽  
Vol 141 (2) ◽  
pp. 173-193 ◽  
Author(s):  
DAVID BOND ◽  
PAUL B. WIGNALL ◽  
GRZEGORZ RACKI

The intensity and extent of anoxia during the two Kellwasser anoxic events has been investigated in a range of European localities using a multidisciplinary approach (pyrite framboid assay, gamma-ray spectrometry and sediment fabric analysis). The results reveal that the development of the Lower Kellwasser Horizon in the early Late rhenana Zone (Frasnian Stage) in German type sections does not always coincide with anoxic events elsewhere in Europe and, in some locations, seafloor oxygenation improves during this interval. Thus, this anoxic event is not universally developed. In contrast, the Upper Kellwasser Horizon, developed in the Late linguiformis Zone (Frasnian Stage) in Germany correlates with a European-wide anoxic event that is manifest as an intensification of anoxia in basinal locations to the point that stable euxinic conditions were developed (for example, in the basins of the Holy Cross Mountains, Poland). The interval also saw the spread of dysoxic waters into very shallow water (for instance, reefal) locations, and it seems reasonable to link the contemporaneous demise of many marine taxa to this phase of intense and widespread anoxia. In basinal locations, euxinic conditions persisted into the earliest Famennian with little change of depositional conditions. Only in the continental margin location of Austria was anoxia not developed at any time in the Late Devonian. Consequently it appears that the Upper Kellwasser anoxic event was an epicontinental seaway phenomenon, caused by the upward expansion of anoxia from deep basinal locales rather than an ‘oceanic’ anoxic event that has spilled laterally into epicontinental settings.


2012 ◽  
Vol 8 (5) ◽  
pp. 1447-1455 ◽  
Author(s):  
M. Wagreich

Abstract. The Coniacian–Santonian time interval is the inferred time of oceanic anoxic event 3 (OAE 3), the last of the Cretaceous OAEs. A detailed look on the temporal and spatial distribution of organic-rich deposits attributed to OAE 3 suggests that black shale occurrences are restricted to the equatorial to mid-latitudinal Atlantic and adjacent basins, shelves and epicontinental seas like parts of the Caribbean, the Maracaibo Basin and the Western Interior Basin, and are largely absent in the Tethys, the North Atlantic, the southern South Atlantic, and the Pacific. Here, oxic bottom waters prevailed as indicated by the widespread occurrence of red deep-marine CORBs (Cretaceous Oceanic Red Beds). Widespread CORB sedimentation started during the Turonian after Oceanic Anoxic Event 2 (OAE 2) except in the Atlantic realm where organic-rich strata continue up to the Santonian. The temporal distribution of black shales attributed to OAE 3 indicates that organic-rich strata do not define a single and distinct short-time event, but are distributed over a longer time span and occur in different basins during different times. This suggests intermittent and regional anoxic conditions from the Coniacian to the Santonian. A comparison of time-correlated high-resolution δ13C curves for this interval indicates several minor positive excursions of up to 0.5‰, probably as a result of massive organic carbon burial cycles in the Atlantic. Regional wind-induced upwelling and restricted deep basins may have contributed to the development of anoxia during a time interval of widespread oxic conditions, thus highlighting the regional character of inferred OAE 3 as regional Atlantic event(s).


2019 ◽  
Vol 498 (1) ◽  
pp. 189-210 ◽  
Author(s):  
O. Mulayim ◽  
O. I. Yilmaz ◽  
B. Sarı ◽  
K. Tasli ◽  
M. Wagreich

AbstractThe Cenomanian–Turonian carbonate ramp in the Adıyaman Region of SE Turkey (Northern Arabian Platform) records an abrupt shift from benthic carbonate deposits to pelagic deposits near the Cenomanian–Turonian boundary event (CTBE) in the İnişdere stratigraphic section and surrounding borehole sections. A positive δ13C excursion of up to 2.15% is recorded in carbonate and organic carbon deposited around the CTBE and provides evidence of a direct link between the CTBE and oceanic anoxic events and the demise of the shallow carbonate production in the Derdere Formation. The microfacies analyses, biostratigraphic dating and palaeoenvironmental interpretations suggest that the platform was drowned near the CTBE as a result of changing environmental conditions. The microfacies indicating significant deepening show a contemporaneity to equivalent surfaces globally and thus strongly support an isochronous formation of Cenomanian–Turonian facies by eustatic sea-level changes. Anoxia spreading over the platform drastically reduced the carbonate production as observed in the studied sections and, therefore, resulted in a reduction in carbonate accumulation rates. Regional/local subsidence and a coeval sea-level rise during the late Cenomanian to early Turonian interval were the cause of the drowning of the platform, including regional anoxia at the northern Arabian platform linked to the Cenomanian–Turonian oceanic anoxic event (OAE2).


2011 ◽  
Vol 3 (2) ◽  
pp. 789-838 ◽  
Author(s):  
M. Di Lucia ◽  
M. Mutti ◽  
M. Parente

Abstract. Low resolution and lack of chronostratigraphic calibration of carbonate platform biostratigraphy hinder precise correlation with coeval deep-water successions. This is the main obstacle when studying the record of Mesozoic oceanic anoxic events in carbonate platforms. In this paper we use carbon isotope stratigraphy to produce the first chronostratigraphic calibration of the Barremian–Aptian biostratigraphy of the Apenninic carbonate platform of southern Italy. According to our calibration, the "Selli level" black shales of epicontinental and oceanic basins corresponds in the southern Apenninic carbonate platform to the interval between the "Orbitolina level", characterized by the association of Mesorbitolina parva and Mesorbitolina texana, and the second acme of Salpingoporella dinarica. The biocalcification crisis of nannoconids corresponds to the interval going from the first acme of S. dinarica to just above the top of the "Orbitolina level". Since these bioevents have been widely recognized beyond the Apenninic platform, our calibration can be used to pinpoint the interval corresponding to the Early Aptian oceanic anoxic event in other carbonate platforms of central and southern Tethys.


2018 ◽  
Vol 36 (2) ◽  
pp. 846 ◽  
Author(s):  
V. Karakitsios ◽  
H. Tsikos ◽  
Y. Van Breugel ◽  
I. Bakopoulos ◽  
L. Koletti

Integrated chemostratigraphy and biostratigraphy in Cretaceous pelagic carbonate successions and associated organic sediments of the Ionian basin (western Greece) show the first documentation of the Cenomanian Turonian (OAE)2 and Lower Albian (OAE)1b Oceanic Anoxic Events from western Greece. Preliminary study of the Pindos basin (western Greece) has also identified a black shale horizon which may corresponds to the Lower Albian (OAE)1b Oceanic Anoxic Event.


2016 ◽  
Vol 21 ◽  
pp. 41-46 ◽  
Author(s):  
Pedro Alejandro Ruiz-Ortiz ◽  
José Manuel Castro ◽  
Ginés Alfonso de Gea ◽  
Ian Jarvis ◽  
José Miguel Molina ◽  
...  

Abstract. The Cretaceous was punctuated by several episodes of accelerated global change, defined as Oceanic Anoxic Events (OAEs), that reflect abrupt changes in global carbon cycling. The Aptian Oceanic Anoxic Event (OAE1a; 120 Ma) represents an excellent example, recorded in all major ocean basins, and associated with massive burial of organic matter in marine sediments. The OAE1a is concomitant with the "nannoconid crisis", which is characterized by a major biotic turnover, and a widespread demise of carbonate platforms. Many studies have been published over the last decades on OAE1a's from different sections in the world, and provide a detailed C-isotope stratigraphy for the event. Nevertheless, new high-resolution studies across the event are essential to shed light on the precise timing and rates of the multiple environmental and biotic changes that occurred during this critical period of Earth history. Here we present a new drill core recovering an Aptian section spanning the OAE1a in southern Spain. The so-called Cau section was drilled in the last quarter of 2015. The Cau section is located in the easternmost part of the Prebetic Zone (Betic Cordillera), which represents platform deposits of the southern Iberian palaeomargin. The lower Aptian deposits of the Cau section belong to a hemipelagic unit (Almadich Formation), deposited in a highly subsident sector of the distal parts of the Prebetic Platform. Previous work on the early Aptian of the Cau succession has focused on stratigraphy, bioevents, C-isotope stratigraphy, and organic and elemental geochemistry. A more recent study based on biomarkers has presented a detailed record of the pCO2 evolution across the OAE1a (Naafs et al., 2016). All these studies reveal that the Cau section represents an excellent site to further investigate the OAE1a, based on its unusually high sedimentation rate and stratigraphic continuity, the quality and preservation of fossils, and the well-expressed geochemical signatures.


2006 ◽  
Vol 39 (1) ◽  
pp. 64 ◽  
Author(s):  
V. Karakitsios ◽  
H. Tsikos ◽  
K. Agiadi - Katsiaouni ◽  
S. Dermitzoglou ◽  
E. Chatziharalambous

In the present paper we examine the use of carbon and oxygen stable isotopes in the study of global palaeoceanographic changes, with special reference to the oceanic anoxic events (OAEs). The analysis of stable isotopes was applied to the examination of Cretaceous sediments from the Ionian and Pindos zones of Western Greece. In the Ionian zone the carbon and oxygen stable isotopes, combined with biostratigraphic data, record the palaeoenvironmental change corresponding to the anoxic events Bonarelli (Cenomanian/Turonian, OAE2) and Paquier (Lower Albian, OAE1b). In the Pindos zone, within the Cretaceous sediments, we observed two organic-carbon-rich levels. According to the biostratigraphic and isotopie analysis, the first level corresponds to an OAE of Santonian age. This local oceanic anoxic event is described for the first time. The second level, Aptian - Albian age, possibly correlates to either the Paquier event (OAE 1b) or the Selli event (OAE 1a), which in Greece were until now known only in the Ionian zone.


Sign in / Sign up

Export Citation Format

Share Document