scholarly journals Role of eccentricity in early Holocene African and Asian summer monsoons

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chi-Hua Wu ◽  
Shih-Yu Lee ◽  
Pei-Chia Tsai

AbstractThe effect of precession on paleoclimate changes depends on eccentricity. However, whether and to what degree eccentricity relates to millennial-scale monsoonal changes remain unclear. By investigating climate simulations with a fixed precession condition of 9 ka before the present, we explored the potential influence of eccentricity on early-Holocene changes in the Afro–Asian summer monsoons. Compared with the lower eccentricity of the present day, higher eccentricity in the early Holocene strengthened the continental summer monsoons, Pacific anticyclone, and Hadley circulation, particularly over the ocean. Over Africa, the eccentricity-induced “dry-gets-wetter” condition could be related to the Green Sahara, suggesting a superimposed effect of precession. Over the western Pacific, the tropical response to eccentricity may have been competitive in terms of what an extremely high obliquity may have caused. A downscaled modulation of eccentricity in relation to precession and obliquity cannot be ignored when paleomonsoon records are studied. Regarding early-Holocene monsoonal changes in South Asia, however, a high eccentricity may have had only a secondary effect on enhancing the monsoonal precipitation in the southern edge of the Tibetan Plateau, exhibiting the weak power of candle-like heating. This suggested that sizable monsoonal changes over the northern Indian Ocean and India–Pakistan region are unrelated to early-Holocene eccentricity.

2013 ◽  
Vol 13 (9) ◽  
pp. 24809-24853
Author(s):  
N. K. Heath ◽  
H. E. Fuelberg

Abstract. The Asian summer monsoon is a prominent feature of the global circulation that is associated with an upper-level anticyclone (ULAC) that stands out vividly in satellite observations of trace gases. The ULAC also is an important region of troposphere-to-stratosphere transport. We ran the Weather Research and Forecasting (WRF) model at convective-permitting scales (4 km grid spacing) between 10–20 August 2012 to understand the role of convection in transporting boundary layer air into the upper-level anticyclone. Such high-resolution modeling of the Asian ULAC previously has not been documented in the literature. Comparison of our WRF simulation with reanalysis and satellite observations showed that WRF simulated the atmosphere sufficiently well to be used to study convective transport into the ULAC. A back-trajectory analysis based on hourly WRF output showed that > 90% of convectively influenced parcels reaching the ULAC came from the Tibetan Plateau (TP) and the southern slope (SS) of the Himalayas. A distinct diurnal cycle is seen in the convective trajectories, with their greatest impact occurring between 1600–2300 local solar time. This finding highlights the role of "everyday" diurnal convection in transporting boundary layer air into the ULAC. WRF output at 15 min intervals was produced for 16 August to examine the convection in greater detail. This high-temporal output revealed that the weakest convection in the study area occurred over the TP. However, because the TP is at 3000–5000 m a.m.s.l., its convection does not have to be as strong to reach the ULAC as in lower altitude regions. In addition, because the TP's elevated heat source is a major cause of the ULAC, we propose that convection over the TP and the neighboring SS is ideally situated geographically to impact the ULAC. The vertical mass flux of water vapor into the ULAC also was calculated. Results show that the TP and SS regions dominate other Asian regions in transporting moisture vertically into the ULAC. Because convection reaching the ULAC is more widespread over the TP than nearby, we propose that the abundant convection partially explains the TP's dominant water vapor fluxes. In addition, greater outgoing longwave radiation reaches the upper levels of the TP due to its elevated terrain. This creates a warmer ambient upper level environment, allowing parcels with greater saturation mixing ratios to enter the ULAC. Lakes in the Tibetan Plateau are shown to provide favorable conditions for deep convection during the night.


2014 ◽  
Vol 14 (4) ◽  
pp. 2055-2070 ◽  
Author(s):  
N. K. Heath ◽  
H. E. Fuelberg

Abstract. The Asian summer monsoon is a prominent feature of the global circulation that is associated with an upper-level anticyclone (ULAC) that stands out vividly in satellite observations of trace gases. The ULAC also is an important region of troposphere-to-stratosphere transport. We ran the Weather Research and Forecasting (WRF) model at convective-permitting scales (4 km grid spacing) between 10 and 20 August 2012 to understand the role of convection in rapidly transporting boundary layer air into the ULAC. Such high-resolution modeling of the Asian ULAC previously has not been documented in the literature. Comparison of our WRF simulation with reanalysis and satellite observations showed that WRF simulated the atmosphere sufficiently well to be used to study convective transport into the ULAC. A back-trajectory analysis based on hourly WRF output showed that > 90% of convectively influenced parcels reaching the ULAC came from the Tibetan Plateau (TP) and the southern slope (SS) of the Himalayas. A distinct diurnal cycle is seen in the convective trajectories, with a majority of them crossing the boundary layer between 1600 and 2300 local solar time. This finding highlights the role of "everyday" diurnal convection in transporting boundary layer air into the ULAC. WRF output at 15 min intervals was produced for 16 August to examine the convection in greater detail. This high-temporal output revealed that the weakest convection in the study area occurred over the TP. However, because the TP is at 3000–5000 m a.m.s.l., its convection does not have to be as strong to reach the ULAC as in lower altitude regions. In addition, because the TP's elevated heat source is a major cause of the ULAC, we propose that convection over the TP and the neighboring SS is ideally situated geographically to impact the ULAC. The vertical mass flux of water vapor into the ULAC also was calculated. Results show that the TP and SS regions dominate other Asian regions in transporting moisture vertically into the ULAC. Because convection reaching the ULAC is more widespread over the TP than nearby, we propose that the abundant convection partially explains the TP's dominant water vapor fluxes. In addition, greater outgoing longwave radiation reaches the upper levels of the TP due to its elevated terrain. This creates a warmer ambient upper-level environment, allowing parcels with greater saturation mixing ratios to enter the ULAC. Lakes in the Tibetan Plateau are shown to provide favorable conditions for deep convection during the night.


2018 ◽  
Vol 31 (13) ◽  
pp. 5319-5332 ◽  
Author(s):  
Yi-Peng Guo ◽  
Zhe-Min Tan

El Niño–Southern Oscillation (ENSO), which features an equatorial quasi-symmetric sea surface temperature anomaly (SSTA), is related to both the symmetric and asymmetric components of the Hadley circulation (HC) variability. However, the mechanisms for such a nonlinear HC–ENSO relationship are still unclear. Using 36-yr monthly reanalysis datasets, this study shows that the month-to-month HC variability is dominated by two principal modes, the asymmetric mode (AM) and symmetric mode (SM), both of which are highly correlated with ENSO variability. Furthermore, the relationship between the HC principal modes and the ENSO SSTA is modulated by the western Pacific SST annual cycle. When the zonal mean western Pacific SST peaks off (on) the equator, the ENSO SSTA leads to the AM (SM) of HC variability. This is because the zonal mean western Pacific SST peak provides a warmer background favorable for the SSTA to stimulate convection, indicating the important role of the combined effect of the SST annual cycle and the ENSO SSTA in affecting the HC variability. Importantly, the western Pacific SST annual cycle has no such modulation effect during central Pacific El Niño or La Niña events. The results have important implications for simulating and predicting the climatic impacts of ENSO and HC variability.


2020 ◽  
Vol 95 ◽  
pp. 84-96
Author(s):  
Gang Xu ◽  
Jian Liu ◽  
Marcello Gugliotta ◽  
Yoshiki Saito ◽  
Lilei Chen ◽  
...  

AbstractThis paper presents geochemical and grain-size records since the early Holocene in core ECS0702 with a fine chronology frame obtained from the Yangtze River subaqueous delta front. Since ~9500 cal yr BP, the proxy records of chemical weathering from the Yangtze River basin generally exhibit a Holocene optimum in the early Holocene, a weak East Asian summer monsoon (EASM) period during the middle Holocene, and a relatively strong EASM period in the late Holocene. The ~8.2 and ~4.4 cal ka BP cooling events are recorded in core ECS0702. The flooding events reconstructed by the grain-size parameters since the early Holocene suggest that the floods mainly occurred during strong EASM periods and the Yangtze River mouth sandbar caused by the floods mainly formed in the early and late Holocene. The Yangtze River-mouth sandbars since the early Holocene shifted from north to south, affected by tidal currents and the Coriolis force, and more importantly, controlled by the EASM. Our results are of great significance for enriching both the record of Holocene climate change in the Yangtze River basin and knowledge about the formation and evolution progress of the deltas located in monsoon regions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer A. MacKinnon ◽  
Harper L. Simmons ◽  
John Hargrove ◽  
Jim Thomson ◽  
Thomas Peacock ◽  
...  

AbstractUnprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.


2019 ◽  
Vol 32 (14) ◽  
pp. 4215-4234 ◽  
Author(s):  
Qin Su ◽  
Buwen Dong

Abstract Observational analysis indicates significant decadal changes in daytime, nighttime, and compound (both daytime and nighttime) heat waves (HWs) over China across the mid-1990s, featuring a rapid increase in frequency, intensity, and spatial extent. The variations of these observed decadal changes are assessed by the comparison between the present day (PD) of 1994–2011 and the early period (EP) of 1964–81. The compound HWs change most remarkably in all three aspects, with frequency averaged over China in the PD tripling that in the EP and intensity and spatial extent nearly doubling. The daytime and nighttime HWs also change significantly in all three aspects. A set of numerical experiments is used to investigate the drivers and physical processes responsible for the decadal changes of the HWs. Results indicate the predominant role of the anthropogenic forcing, including changes in greenhouse gas (GHG) concentrations and anthropogenic aerosol (AA) emissions in the HW decadal changes. The GHG changes have dominant impacts on the three types of HWs, while the AA changes make significant influences on daytime HWs. The GHG changes increase the frequency, intensity, and spatial extent of the three types of HWs over China both directly via the strengthened greenhouse effect and indirectly via land–atmosphere and circulation feedbacks in which GHG-change-induced warming in sea surface temperature plays an important role. The AA changes decrease the frequency and intensity of daytime HWs over Southeastern China through mainly aerosol–radiation interaction, but increase the frequency and intensity of daytime HWs over Northeastern China through AA-change-induced surface–atmosphere feedbacks and dynamical changes related to weakened East Asian summer monsoon.


2011 ◽  
Vol 11 (12) ◽  
pp. 6049-6062 ◽  
Author(s):  
X. Yue ◽  
H. Liao ◽  
H. J. Wang ◽  
S. L. Li ◽  
J. P. Tang

Abstract. Mineral dust aerosol can be transported over the nearby oceans and influence the energy balance at the sea surface. The role of dust-induced sea surface temperature (SST) responses in simulations of the climatic effect of dust is examined by using a general circulation model with online simulation of mineral dust and a coupled mixed-layer ocean model. Both the longwave and shortwave radiative effects of mineral dust aerosol are considered in climate simulations. The SST responses are found to be very influential on simulated dust-induced climate change, especially when climate simulations consider the two-way dust-climate coupling to account for the feedbacks. With prescribed SSTs and dust concentrations, we obtain an increase of 0.02 K in the global and annual mean surface air temperature (SAT) in response to dust radiative effects. In contrast, when SSTs are allowed to respond to radiative forcing of dust in the presence of the dust cycle-climate interactions, we obtain a global and annual mean cooling of 0.09 K in SAT by dust. The extra cooling simulated with the SST responses can be attributed to the following two factors: (1) The negative net (shortwave plus longwave) radiative forcing of dust at the surface reduces SST, which decreases latent heat fluxes and upward transport of water vapor, resulting in less warming in the atmosphere; (2) The positive feedback between SST responses and dust cycle. The dust-induced reductions in SST lead to reductions in precipitation (or wet deposition of dust) and hence increase the global burden of small dust particles. These small particles have strong scattering effects, which enhance the dust cooling at the surface and further reduce SSTs.


Sign in / Sign up

Export Citation Format

Share Document