scholarly journals Comparative proteomic analysis of nuclear and cytoplasmic compartments in human cardiac progenitor cells

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Guillermo Albericio ◽  
Susana Aguilar ◽  
Jose Luis Torán ◽  
Rosa Yañez ◽  
Juan Antonio López ◽  
...  

AbstractClinical trials evaluating cardiac progenitor cells (CPC) demonstrated feasibility and safety, but no clear functional benefits. Therefore a deeper understanding of CPC biology is warranted to inform strategies capable to enhance their therapeutic potential. Here we have defined, using a label-free proteomic approach, the differential cytoplasmic and nuclear compartments of human CPC (hCPC). Global analysis of cytoplasmic repertoire in hCPC suggested an important hypoxia response capacity and active collagen metabolism. In addition, comparative analysis of the nuclear protein compartment identified a significant regulation of a small number of proteins in hCPC versus human mesenchymal stem cells (hMSC). Two proteins significantly upregulated in the hCPC nuclear compartment, IL1A and IMP3, showed also a parallel increase in mRNA expression in hCPC versus hMSC, and were studied further. IL1A, subjected to an important post-transcriptional regulation, was demonstrated to act as a dual-function cytokine with a plausible role in apoptosis regulation. The knockdown of the mRNA binding protein (IMP3) did not negatively impact hCPC viability, but reduced their proliferation and migration capacity. Analysis of a panel of putative candidate genes identified HMGA2 and PTPRF as IMP3 targets in hCPC. Therefore, they are potentially involved in hCPC proliferation/migration regulation.

2021 ◽  
Author(s):  
Guillermo Albericio ◽  
Susana Aguilar ◽  
Jose Luis Torán ◽  
Rosa Yañez ◽  
Juan Antonio López ◽  
...  

Abstract Clinical trials evaluating cardiac progenitor cells (CPC) demonstrated feasibility and safety, but no clear functional benefits. Therefore a deeper understanding of CPC biology is warranted to inform strategies capable to enhance their therapeutic potential. Here we have defined, using a label-free proteomic approach, the differential cytoplasmic and nuclear compartments of human CPC (hCPC). Global analysis of cytoplasmic repertoire in hCPC suggested an important hypoxia response capacity and active collagen metabolism. In addition, comparative analysis of the nuclear protein compartment identified a significant regulation of a small number of proteins in hCPC versus human mesenchymal stem cells (hMSC). Two proteins significantly upregulated in the hCPC nuclear compartment, IL1A and IMP3, showed also a parallel increase in mRNA expression in hCPC versus hMSC, and were studied further. IL1A, subjected to an important post-transcriptional regulation, was demonstrated to act as a dual-function cytokine with a plausible role in apoptosis regulation. The knockdown of the mRNA binding protein (IMP3) did not negatively impact hCPC viability, but reduced their proliferation and migration capacity. Analysis of a panel of putative candidate genes identified HMGA2 and PTPRF as IMP3 targets in hCPC. Therefore, they are potentially involved in hCPC proliferation/migration regulation.


Author(s):  
Roberto Bolli ◽  
Xian-Liang Tang ◽  
Yiru Guo ◽  
Qianhong Li

The falsification of data related to c-kit+ cardiac progenitor cells (CPCs) by a Harvard laboratory has been a veritable tragedy. Does this fraud mean that CPCs are not beneficial in models of ischemic cardiomyopathy? At least 50 studies from 26 laboratories independent of the Harvard group have reported beneficial effects of CPCs in mice, rats, pigs, and cats. The mechanism of action remains unclear. Our group has shown that CPCs do not engraft in the diseased heart, do not differentiate into new cardiac myocytes, do not regenerate dead myocardium, and thus work via paracrine mechanisms. A casualty of the misconduct at Harvard has been the SCIPIO trial, a collaboration between the Harvard group and the group in Louisville. The retraction of the SCIPIO paper was caused exclusively by issues with data generated at Harvard, not those generated in Louisville. In the retraction notice, the Lancet editors stated: “Although we do not have any reservations about the clinical work in Louisville that used the preparations from Anversa's laboratory in good faith, the lack of reliability regarding the laboratory work at Harvard means that we are now retracting this paper.” We must be careful not to dismiss all work on CPCs because of one laboratory’s misconduct. An unbiased review of the literature supports the therapeutic potential of CPCs for heart failure at the preclinical level.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0140798 ◽  
Author(s):  
Bathri N. Vajravelu ◽  
Kyung U. Hong ◽  
Tareq Al-Maqtari ◽  
Pengxiao Cao ◽  
Matthew C. L. Keith ◽  
...  

2020 ◽  
Author(s):  
Wanling Xuan ◽  
Mahmood Khan ◽  
Muhammad Ashraf

AbstractBackground and ObjectiveDuchenne muscular dystrophy (DMD) is caused by mutations of the gene that encodes the protein dystrophin. Loss of dystrophin leads to severe and progressive muscle-wasting in both skeletal and heart muscles. Human induced pluripotent stem cells (hiPSCs) and their derivatives offer important opportunities to treat a number of diseases. Here, we investigated whether givinostat, a histone deacetylase inhibitor (HDACi), could reprogram hiPSCs into muscle progenitor cells (MPC) for DMD treatment.Methods and ResultsMPC generated by CHIR99021 and givinostat (Givi) small molecules from multiple hiPSCs expressed myogenic makers (Pax7, desmin) and were differentiated into myotubes expressing MF20 upon culture in specific differentiation medium. These MPC exhibited superior proliferation and migration capacity determined by CCK-8, colony and migration assays compared to control-MPC generated by CHIR99021 and fibroblast growth factor (FGF). Upon transplantation in hind limb of Mdx/SCID mice with cardiotoxin (CTX) induced injury, these MPC showed higher engraftment and restoration of dystrophin than treatment with control-MPC and human myoblasts. In addition, treated muscle with these MPC showed significantly limited infiltration of inflammatory cells and reduced muscle necrosis and fibrosis. A number of these cells were engrafted under basal lamina expressing Pax7, which were capable of generating new muscle fibers after additional injury. Extracellular vesicles released from these cells promoted angiogenesis after reinjury.ConclusionWe successfully generated integration free MPC from multiple hiPS cell lines using CHIR99021 and Givi. Givinostat induced MPC showed marked and impressive regenerative capabilities and restored dystrophin in injured tibialis muscle compared to control MPC. Additionally, MPC generated by Givi also seeded the stem cell pool in the treated muscle. It is concluded that hiPSCs pharmacologically reprogrammed into MPC with a small molecule, Givi with anti-oxidative, anti-inflammatory and muscle gene promoting properties might be an effective cellular source for treatment of muscle injury and restoration of dystrophin in DMD.


Author(s):  
Zohreh Bagheri ◽  
◽  
Fatemeh Shamsi ◽  
Zahra Zeraatpisheh ◽  
Mahin Salman Nejad ◽  
...  

Introduction: To address the question whether combination of methylprednisolone (MP) as an anti-inflammatory drug used in neurodegenerative diseases and neural stem/progenitor cells (NS/PCs) is safe, the present study was designed. Methods: Embryonic rat NS/PCs were exposed to different doses of MP and survival by MTT assay, proliferation by analyzing the number and diameter of neurospheres and the migration of the cells by neurosphere assay were evaluated. Results: The viability of NS/PCs reduced following exposure to 10, 15 and 20 µg/ml of MP. In addition, although the number of neurospheres didn’t change, exposure to different doses of MP resulted in formation of smaller neurospheres. Despite these undesirable effects, the highest concentration of MP (20 μg/ml) increased the migration capacity of the NS/PCs. Conclusion: The combination of MP and NS/PCs is not recommended due to the adverse effects of MP on survival and proliferation of NS/PCs.


2020 ◽  
Vol 16 (3) ◽  
pp. 199-209
Author(s):  
Ezzatollah Fathi ◽  
Behnaz Valipour ◽  
Ilja Vietor ◽  
Raheleh Farahzadi

In recent years, several studies have investigated cell transplantation as an innovative strategy to restore cardiac function following heart failure. Previous studies have also shown cardiac progenitor cells as suitable candidates for cardiac cell therapy compared with other stem cells. Cellular kit (c-kit) plays an important role in the survival and migration of cardiac progenitor cells. Like other types of cells, in the heart, cellular responses to various stimuli are mediated via coordinated pathways. Activation of c-kit+ cells leads to subsequent activation of several downstream mediators such as PI3K and the MAPK pathways. This review aims to outline current research findings on the role of PI3K/AKT and the MAPK pathways in myocardial regeneration potential of c-kit+.


2020 ◽  
Vol 12 (5) ◽  
pp. 2614-2624 ◽  
Author(s):  
Chuanchuan Li ◽  
Yan Zhang ◽  
Yuan Tang ◽  
Jinwen Xiao ◽  
Feng Gao ◽  
...  

Kardiologiia ◽  
2019 ◽  
Vol 59 (5) ◽  
pp. 53-60 ◽  
Author(s):  
K. V. Dergilev ◽  
Z. I. Tsokolayeva ◽  
I. B. Beloglazova ◽  
E. I. Ratner ◽  
E. V. Parfyonova

Today, transplantation of stem / progenitor cells is a promising approach for the treatment of heart diseases. The therapeutic potential of transplanted cells directly depends on the method of delivery to the myocardium, which determines their regenerative properties. It is important for the development of effective methods of cell therapy. In this paper, we performed a comparative study of efficacy of cardiac progenitor cell (CPC) transplantation by intramyocardial needle injections and by tissue engineering constructs (TEC) – “cell sheets” consisting of cells and their extracellular matrix. It has been shown, that transplantation of TEC in comparison with the intramyocardial delivery provides more extensive distribution and retains more proliferating cellular elements in the damaged myocardium, attenuates the negative cardiac remodeling of the left ventricle and promotes its vascularization.   


Sign in / Sign up

Export Citation Format

Share Document