scholarly journals Beef tallow injection matrix for serial crystallography

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ki Hyun Nam

AbstractSerial crystallography (SX) enables the visualization of the time-resolved molecular dynamics of macromolecular structures at room temperature while minimizing radiation damage. In SX experiments, the delivery of a large number of crystals into an X-ray interaction point in a serial and stable manner is key. Sample delivery using viscous medium maintains the stable injection stream at low flow rates, markedly reducing sample consumption compared with that of a liquid jet injector and is widely applied in SX experiments with low repetition rates. As the sample properties and experimental environment can affect the stability of the injection stream of a viscous medium, it is important to develop sample delivery media with various characteristics to optimize the experimental environment. In this study, a beef tallow injection matrix possessing a higher melting temperature than previously reported fat-based shortening and lard media was introduced as a sample delivery medium and applied to SX. Beef tallow was prepared by heat treating fats from cattle, followed by the removal of soluble impurities from the extract by phase separation. Beef tallow exhibited a very stable injection stream at room temperature and a flow rate of < 10 nL/min. The room-temperature structures of lysozyme and glucose isomerase embedded in beef tallow were successfully determined at 1.55 and 1.60 Å, respectively. The background scattering of beef tallow was higher than that of previously reported fat-based shortening and lard media but negligible for data processing. In conclusion, the beef tallow matrix can be employed for sample delivery in SX experiments conducted at temperatures exceeding room temperature.

2020 ◽  
Vol 21 (17) ◽  
pp. 5977
Author(s):  
Ki Hyun Nam

Serial crystallography (SX) using X-ray free electron laser or synchrotron X-ray allows for the determination of structures, at room temperature, with reduced radiation damage. Moreover, it allows for the study of structural dynamics of macromolecules using a time-resolved pump-probe, as well as mix-and-inject experiments. Delivering a crystal sample using a viscous medium decreases sample consumption by lowering the flow rate while being extruded from the injector or syringe as compared to a liquid jet injector. Since the environment of crystal samples varies, continuous development of the delivery medium is important for extended SX applications. Herein, I report the preparation and characterization of a lard-based sample delivery medium for SX. This material was obtained using heat treatment, and then the soluble impurities were removed through phase separation. The lard injection medium was highly stable and could be injected via a syringe needle extruded at room temperature with a flow rate < 200 nL/min. Serial millisecond crystallography experiments were performed using lard, and the room temperature structures of lysozyme and glucose isomerase embedded in lard at 1.75 and 1.80 Å, respectively, were determined. The lard medium showed X-ray background scattering similar or relatively lower than shortenings and lipidic cubic phase; therefore, it can be used as sample delivery medium in SX experiments.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ki Hyun Nam

AbstractSerial crystallography allows crystal structures to be determined at room temperature through the steady delivery of crystals to the X-ray interaction point. Viscous delivery media are advantageous because they afford efficient sample delivery from an injector or syringe at a low flow rate. Hydrophobic delivery media, such as lipidic cubic phase (LCP) or grease, provide a stable injection stream and are widely used. The development of new hydrophobic delivery materials can expand opportunities for future SX studies with various samples. Here, I introduce fat-based shortening as a delivery medium for SX experiments. This material is commercially available at low cost and is straightforward to handle because its phase (i.e., solid or liquid) can be controlled by temperature. Shortening was extruded from a syringe needle in a stable injection stream even below 200 nl/min. X-ray exposed shortening produced several background scattering rings, which have similar or lower intensities than those of LCP and contribute negligibly to data processing. Serial millisecond crystallography was performed using two shortening delivery media, and the room temperature crystal structures of lysozyme and glucose isomerase were successfully determined at resolutions of 1.5–2.0 Å. Therefore, shortening can be used as a sample delivery medium in SX experiments.


2019 ◽  
Author(s):  
Ki Hyun Nam

AbstractSerial crystallography (SX) allows crystal structures to be observed at room temperature through the steady delivery of crystals to the X-ray interaction point. Viscous delivery media are advantageous because they afford efficient sample delivery from an injector or syringe at a low flow rate. Hydrophobic delivery media, such as lipidic cubic phase (LCP) or grease, provide a very stable injection stream and are widely used. The development of new hydrophobic delivery materials can expand opportunities for future SX studies with various samples. Here, I introduce fat-based shortening as a delivery medium for SX experiments. This material is commercially available at low cost and is straightforward to handle because its phase (i.e., solid or liquid) can be controlled by temperature. Shortening was extruded from a syringe needle in a very stable injection stream even below 200 nl/min. X-ray exposed shortening produced several background scattering rings, which have similar or lower intensities than those of LCP and contribute negligibly to data processing. Serial millisecond crystallography was performed using two shortening delivery media, and the room temperature crystal structures of lysozyme and glucose isomerase were successfully determined at resolutions of 1.5–2.0 Å. Therefore, shortening can be used as a sample delivery medium in SX experiments.


2020 ◽  
Vol 53 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Ki Hyun Nam

Serial crystallography (SX) is an innovative technology in structural biology that enables the visualization of the molecular dynamics of macromolecules at room temperature. SX experiments always require a considerable amount of effort to deliver a crystal sample to the X-ray interaction point continuously and reliably. Here, a sample-delivery method using a capillary and a delivery medium is introduced. The crystals embedded in the delivery medium can pass through the capillary tube, which is aligned with the X-ray beam, at very low flow rates without requiring elaborate delivery techniques, drastically reducing sample consumption. In serial millisecond crystallography using a viscous medium via a capillary, crystals of lysozyme embedded in agarose, which produce an unstable injection stream at atmospheric pressure, and crystals of glucose isomerase embedded in gelatin, which is known to be problematic for open-extruder operation, were stably delivered at a flow rate of 100 nl min−1. The room-temperature crystal structures of lysozyme and glucose isomerase were successfully determined at 1.85 and 1.70 Å resolutions, respectively. This simple but highly efficient sample-delivery method can allow researchers to deliver crystals precisely to an X-ray beam in SX experiments.


2020 ◽  
Vol 21 (9) ◽  
pp. 3332 ◽  
Author(s):  
Ki Hyun Nam

Serial crystallography (SX) provides an opportunity to observe the molecular dynamics of macromolecular structures at room temperature via pump-probe studies. The delivery of crystals embedded in a viscous medium via an injector or syringe is widely performed in synchrotrons or X-ray free-electron laser facilities with low repetition rates. Various viscous media have been developed; however, there are cases in which the delivery material undesirably interacts chemically or biologically with specific protein samples, or changes the stability of the injection stream, depending on the crystallization solution. Therefore, continued discovery and characterization of new delivery media is necessary for expanding future SX applications. Here, the preparation and characterization of new polysaccharide (wheat starch (WS) and alginate)-based sample delivery media are introduced for SX. Crystals embedded in a WS or alginate injection medium showed a stable injection stream at a flow rate of < 200 nL/min and low-level X-ray background scattering similar to other hydrogels. Using these media, serial millisecond crystallography (SMX) was performed, and the room temperature crystal structures of glucose isomerase and lysozyme were determined at 1.9–2.0 Å resolutions. WS and alginate will allow an expanded application of sample delivery media in SX experiments.


2020 ◽  
Author(s):  
Keondo Lee ◽  
Donghyeon Lee ◽  
Sangwon Baek ◽  
Jaehyun Park ◽  
Sang Jae Lee ◽  
...  

AbstractSerial femtosecond crystallography (SFX) enables the determination of a room-temperature crystal structure of macromolecules without causing radiation damage, as well as provides time-resolved molecular dynamics data in pump-probe experiments. Fixed-target SFX (FT-SFX) can minimize sample consumption and physical effects to crystals during sample delivery. Various types of sample holders have been developed and applied in FT-SFX; however, no sample holder has been developed that can universally mount crystals of various sizes and shapes. Here, we introduce a viscous media-based crystal support in a sample holder for FT-SFX. Crystal samples were embedded in viscous media such as gelatin and agarose, which were enclosed in a polyimide film. In the vertically placed sample holder, the viscous medium stably supported crystals between the two polyimide films without crystal sinking due to gravity. Using this method, we performed FT-SFX experiments with glucose isomerase and lysozyme embedded in gelatin and agarose, respectively. The room-temperature crystal structures of glucose isomerase and lysozyme were successfully determined at 1.75 and 1.80 Å resolutions, respectively. Viscous media used in this experiment showed negligible background scattering in data processing. This method is useful for delivering crystal samples of various sizes and shapes in FT-SFX experiments.


2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Ki Hyun Nam ◽  
Yunje Cho

Serial crystallography (SX) provides room-temperature crystal structures with minimal radiation damage and facilitates the comprehension of molecular dynamics through time-resolved studies. In SX experiments, it is important to deliver a large number of crystal samples to the X-ray interaction point in a serial and stable manner. The advantage of crystal delivery in a viscous medium via a capillary is the ability to deliver all of the crystal samples to the X-ray interaction point at a low flow rate; however, the capillary often breaks during handling and high X-ray absorption can occur at low energy states. This study aimed to develop a stable system for sample delivery in a viscous medium via a polyimide-based single-channel microfluidic (PSM) chip for SX. Since this microfluidic chip comprises a polyimide film, it has high tensile strength and higher X-ray transmittance than a quartz capillary. The PSM chip was connected to a syringe containing the microcrystals embedded in viscous medium. The channel of the PSM chip was aligned to the X-ray path, and the viscous medium containing lysozyme crystals was stably delivered using a syringe pump at a flow rate of 100 nl min−1. Room-temperature lysozyme crystal structures were successfully determined at 1.85 Å resolution. This method would greatly facilitate sample delivery for SX experiments using synchrotron X-rays.


2020 ◽  
Vol 53 (4) ◽  
pp. 1051-1059 ◽  
Author(s):  
Keondo Lee ◽  
Donghyeon Lee ◽  
Sangwon Baek ◽  
Jaehyun Park ◽  
Sang Jae Lee ◽  
...  

Serial femtosecond crystallography (SFX) enables the determination of the room-temperature crystal structure of macromolecules, as well as providing time-resolved molecular dynamics data in pump–probe experiments. Fixed-target SFX (FT-SFX) can minimize sample consumption and physical effects on crystals during sample delivery. In FT-SFX studies, having a sample holder that can stably fix crystal samples is one of the key elements required for efficient data collection. Hence, development of sample holders from new materials capable of supporting various crystal sizes and shapes may expand the applications of FT-SFX. Here, a viscous-media-based crystal support in a sample holder for FT-SFX is introduced. Crystal samples were embedded in viscous media, namely gelatin and agarose, which were enclosed in a polyimide film. In the vertically placed sample holder, 10–15%(w/v) viscous gelatin and 1–4%(w/v) agarose gel stably supported crystals between two polyimide films, thereby preventing the crystals from descending owing to gravity. Using this method, FT-SFX experiments were performed with glucose isomerase and lysozyme embedded in gelatin and agarose, respectively. The room-temperature crystal structures of glucose isomerase and lysozyme were successfully determined at 1.75 and 1.80 Å resolutions, respectively. The glucose isomerase and lysozyme diffraction analyses were not impeded by excessive background scattering from the viscous media. This method is useful for delivering crystal samples of various sizes and shapes in FT-SFX experiments.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 854
Author(s):  
Ki Hyun Nam

Radiation damage and cryogenic sample environment are an experimental limitation observed in the traditional X-ray crystallography technique. However, the serial crystallography (SX) technique not only helps to determine structures at room temperature with minimal radiation damage, but it is also a useful tool for profound understanding of macromolecules. Moreover, it is a new tool for time-resolved studies. Over the past 10 years, various sample delivery techniques and data collection strategies have been developed in the SX field. It also has a wide range of applications in instruments ranging from the X-ray free electron laser (XFEL) facility to synchrotrons. The importance of the various approaches in terms of the experimental techniques and a brief review of the research carried out in the field of SX has been highlighted in this editorial.


2019 ◽  
Author(s):  
Ki Hyun Nam

AbstractSerial crystallography (SX) is an innovative technology in structural biology that enables the visualization of molecular dynamics of macromolecules at room temperature. SX experiments always require a considerable amount of effort to deliver a crystal sample to the X-ray interaction point continuously and reliably. Here, a sample delivery method using a capillary and a delivery medium is introduced. The crystals embedded in the delivery medium can pass through the capillary tube, which is aligned with the X-ray beam, at very low flow rates without requiring elaborate delivery techniques and drastically reducing sample consumption. This simple but highly efficient sample delivery method can allow researchers to deliver crystals precisely to X-rays in SX experiments.


Sign in / Sign up

Export Citation Format

Share Document