scholarly journals Polysaccharide-Based Injection Matrix for Serial Crystallography

2020 ◽  
Vol 21 (9) ◽  
pp. 3332 ◽  
Author(s):  
Ki Hyun Nam

Serial crystallography (SX) provides an opportunity to observe the molecular dynamics of macromolecular structures at room temperature via pump-probe studies. The delivery of crystals embedded in a viscous medium via an injector or syringe is widely performed in synchrotrons or X-ray free-electron laser facilities with low repetition rates. Various viscous media have been developed; however, there are cases in which the delivery material undesirably interacts chemically or biologically with specific protein samples, or changes the stability of the injection stream, depending on the crystallization solution. Therefore, continued discovery and characterization of new delivery media is necessary for expanding future SX applications. Here, the preparation and characterization of new polysaccharide (wheat starch (WS) and alginate)-based sample delivery media are introduced for SX. Crystals embedded in a WS or alginate injection medium showed a stable injection stream at a flow rate of < 200 nL/min and low-level X-ray background scattering similar to other hydrogels. Using these media, serial millisecond crystallography (SMX) was performed, and the room temperature crystal structures of glucose isomerase and lysozyme were determined at 1.9–2.0 Å resolutions. WS and alginate will allow an expanded application of sample delivery media in SX experiments.

2020 ◽  
Vol 21 (17) ◽  
pp. 5977
Author(s):  
Ki Hyun Nam

Serial crystallography (SX) using X-ray free electron laser or synchrotron X-ray allows for the determination of structures, at room temperature, with reduced radiation damage. Moreover, it allows for the study of structural dynamics of macromolecules using a time-resolved pump-probe, as well as mix-and-inject experiments. Delivering a crystal sample using a viscous medium decreases sample consumption by lowering the flow rate while being extruded from the injector or syringe as compared to a liquid jet injector. Since the environment of crystal samples varies, continuous development of the delivery medium is important for extended SX applications. Herein, I report the preparation and characterization of a lard-based sample delivery medium for SX. This material was obtained using heat treatment, and then the soluble impurities were removed through phase separation. The lard injection medium was highly stable and could be injected via a syringe needle extruded at room temperature with a flow rate < 200 nL/min. Serial millisecond crystallography experiments were performed using lard, and the room temperature structures of lysozyme and glucose isomerase embedded in lard at 1.75 and 1.80 Å, respectively, were determined. The lard medium showed X-ray background scattering similar or relatively lower than shortenings and lipidic cubic phase; therefore, it can be used as sample delivery medium in SX experiments.


2020 ◽  
Vol 53 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Ki Hyun Nam

Serial crystallography (SX) is an innovative technology in structural biology that enables the visualization of the molecular dynamics of macromolecules at room temperature. SX experiments always require a considerable amount of effort to deliver a crystal sample to the X-ray interaction point continuously and reliably. Here, a sample-delivery method using a capillary and a delivery medium is introduced. The crystals embedded in the delivery medium can pass through the capillary tube, which is aligned with the X-ray beam, at very low flow rates without requiring elaborate delivery techniques, drastically reducing sample consumption. In serial millisecond crystallography using a viscous medium via a capillary, crystals of lysozyme embedded in agarose, which produce an unstable injection stream at atmospheric pressure, and crystals of glucose isomerase embedded in gelatin, which is known to be problematic for open-extruder operation, were stably delivered at a flow rate of 100 nl min−1. The room-temperature crystal structures of lysozyme and glucose isomerase were successfully determined at 1.85 and 1.70 Å resolutions, respectively. This simple but highly efficient sample-delivery method can allow researchers to deliver crystals precisely to an X-ray beam in SX experiments.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ki Hyun Nam

AbstractSerial crystallography allows crystal structures to be determined at room temperature through the steady delivery of crystals to the X-ray interaction point. Viscous delivery media are advantageous because they afford efficient sample delivery from an injector or syringe at a low flow rate. Hydrophobic delivery media, such as lipidic cubic phase (LCP) or grease, provide a stable injection stream and are widely used. The development of new hydrophobic delivery materials can expand opportunities for future SX studies with various samples. Here, I introduce fat-based shortening as a delivery medium for SX experiments. This material is commercially available at low cost and is straightforward to handle because its phase (i.e., solid or liquid) can be controlled by temperature. Shortening was extruded from a syringe needle in a stable injection stream even below 200 nl/min. X-ray exposed shortening produced several background scattering rings, which have similar or lower intensities than those of LCP and contribute negligibly to data processing. Serial millisecond crystallography was performed using two shortening delivery media, and the room temperature crystal structures of lysozyme and glucose isomerase were successfully determined at resolutions of 1.5–2.0 Å. Therefore, shortening can be used as a sample delivery medium in SX experiments.


2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Ki Hyun Nam ◽  
Yunje Cho

Serial crystallography (SX) provides room-temperature crystal structures with minimal radiation damage and facilitates the comprehension of molecular dynamics through time-resolved studies. In SX experiments, it is important to deliver a large number of crystal samples to the X-ray interaction point in a serial and stable manner. The advantage of crystal delivery in a viscous medium via a capillary is the ability to deliver all of the crystal samples to the X-ray interaction point at a low flow rate; however, the capillary often breaks during handling and high X-ray absorption can occur at low energy states. This study aimed to develop a stable system for sample delivery in a viscous medium via a polyimide-based single-channel microfluidic (PSM) chip for SX. Since this microfluidic chip comprises a polyimide film, it has high tensile strength and higher X-ray transmittance than a quartz capillary. The PSM chip was connected to a syringe containing the microcrystals embedded in viscous medium. The channel of the PSM chip was aligned to the X-ray path, and the viscous medium containing lysozyme crystals was stably delivered using a syringe pump at a flow rate of 100 nl min−1. Room-temperature lysozyme crystal structures were successfully determined at 1.85 Å resolution. This method would greatly facilitate sample delivery for SX experiments using synchrotron X-rays.


2019 ◽  
Author(s):  
Ki Hyun Nam

AbstractSerial crystallography (SX) allows crystal structures to be observed at room temperature through the steady delivery of crystals to the X-ray interaction point. Viscous delivery media are advantageous because they afford efficient sample delivery from an injector or syringe at a low flow rate. Hydrophobic delivery media, such as lipidic cubic phase (LCP) or grease, provide a very stable injection stream and are widely used. The development of new hydrophobic delivery materials can expand opportunities for future SX studies with various samples. Here, I introduce fat-based shortening as a delivery medium for SX experiments. This material is commercially available at low cost and is straightforward to handle because its phase (i.e., solid or liquid) can be controlled by temperature. Shortening was extruded from a syringe needle in a very stable injection stream even below 200 nl/min. X-ray exposed shortening produced several background scattering rings, which have similar or lower intensities than those of LCP and contribute negligibly to data processing. Serial millisecond crystallography was performed using two shortening delivery media, and the room temperature crystal structures of lysozyme and glucose isomerase were successfully determined at resolutions of 1.5–2.0 Å. Therefore, shortening can be used as a sample delivery medium in SX experiments.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ki Hyun Nam

AbstractSerial crystallography (SX) enables the visualization of the time-resolved molecular dynamics of macromolecular structures at room temperature while minimizing radiation damage. In SX experiments, the delivery of a large number of crystals into an X-ray interaction point in a serial and stable manner is key. Sample delivery using viscous medium maintains the stable injection stream at low flow rates, markedly reducing sample consumption compared with that of a liquid jet injector and is widely applied in SX experiments with low repetition rates. As the sample properties and experimental environment can affect the stability of the injection stream of a viscous medium, it is important to develop sample delivery media with various characteristics to optimize the experimental environment. In this study, a beef tallow injection matrix possessing a higher melting temperature than previously reported fat-based shortening and lard media was introduced as a sample delivery medium and applied to SX. Beef tallow was prepared by heat treating fats from cattle, followed by the removal of soluble impurities from the extract by phase separation. Beef tallow exhibited a very stable injection stream at room temperature and a flow rate of < 10 nL/min. The room-temperature structures of lysozyme and glucose isomerase embedded in beef tallow were successfully determined at 1.55 and 1.60 Å, respectively. The background scattering of beef tallow was higher than that of previously reported fat-based shortening and lard media but negligible for data processing. In conclusion, the beef tallow matrix can be employed for sample delivery in SX experiments conducted at temperatures exceeding room temperature.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3502
Author(s):  
Fangzhou Song ◽  
Masayoshi Uematsu ◽  
Takeshi Yabutsuka ◽  
Takeshi Yao ◽  
Shigeomi Takai

LATP-based composite electrolytes were prepared by sintering the mixtures of LATP precursor and La2O3 nano-powder. Powder X-ray diffraction and scanning electron microscopy suggest that La2O3 can react with LATP during sintering to form fine LaPO4 particles that are dispersed in the LATP matrix. The room temperature conductivity initially increases with La2O3 nano-powder addition showing the maximum of 0.69 mS∙cm−1 at 6 wt.%, above which, conductivity decreases with the introduction of La2O3. The activation energy of conductivity is not largely varied with the La2O3 content, suggesting that the conduction mechanism is essentially preserved despite LaPO4 dispersion. In comparison with the previously reported LATP-LLTO system, although some unidentified impurity slightly reduces the conductivity maximum, the fine dispersion of LaPO4 particles can be achieved in the LATP–La2O3 system.


2000 ◽  
Vol 5 (S1) ◽  
pp. 412-424
Author(s):  
Jung Han ◽  
Jeffrey J. Figiel ◽  
Gary A. Petersen ◽  
Samuel M. Myers ◽  
Mary H. Crawford ◽  
...  

We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant- PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GaInN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.


2003 ◽  
Vol 18 (2) ◽  
pp. 128-134 ◽  
Author(s):  
A. Le Bail ◽  
A.-M. Mercier

The crystal structures of the chiolite-related room temperature phases α-Na5M3F14 (MIII=Cr,Fe,Ga) are determined. For all of them, the space group is P21/n, Z=2; a=10.5096(3) Å, b=7.2253(2) Å, c=7.2713(2) Å, β=90.6753(7)° (M=Cr); a=10.4342(7) Å, b=7.3418(6) Å, c=7.4023(6) Å, β=90.799(5)° (M=Fe), and a=10.4052(1) Å, b=7.2251(1) Å, c=7.2689(1), β=90.6640(4)° (M=Ga). Rietveld refinements produce final RF factors 0.036, 0.033, and 0.035, and RWP factors, 0.125, 0.116, and 0.096, for MIII=Cr, Fe, and Ga, respectively. The MF6 polyhedra in the defective isolated perovskite-like layers deviate very few from perfect octahedra. Subtle octahedra tiltings lead to the symmetry decrease from the P4/mnc space group adopted by the Na5Al3F14 chiolite aristotype to the P21/n space group adopted by the title series. Facile twinning precluded till now the precise characterization of these compounds.


2006 ◽  
Vol 21 (3) ◽  
pp. 214-219 ◽  
Author(s):  
Abderrahim Aatiq ◽  
Btissame Haggouch ◽  
Rachid Bakri ◽  
Youssef Lakhdar ◽  
Ismael Saadoune

Structures of two K2SnX(PO4)3(X=Fe,Yb) phosphates, obtained by conventional solid state reaction techniques at 950 °C, were determined at room temperature by X-ray powder diffraction using Rietveld analysis. The two materials exhibit the langbeinite-type structure (P213 space group, Z=4). Cubic unit cell parameter values are: a=9.9217(4) Å and a=10.1583(4) Å for K2SnFe(PO4)3 and K2SnYb(PO4)3, respectively. Structural refinements show that the two crystallographically independent octahedral sites (of symmetry 3) have a mixed Sn∕X (X=Fe,Yb) population although ordering is stronger in the Yb phase than in the Fe phase.


Sign in / Sign up

Export Citation Format

Share Document