scholarly journals Temperature and interlayer coupling induced thermal transport across graphene/2D-SiC van der Waals heterostructure

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Md. Sherajul Islam ◽  
Imon Mia ◽  
A. S. M. Jannatul Islam ◽  
Catherine Stampfl ◽  
Jeongwon Park

AbstractGraphene based two-dimensional (2D) van der Waals (vdW) materials have attracted enormous attention because of their extraordinary physical properties. In this study, we explore the temperature and interlayer coupling induced thermal transport across the graphene/2D-SiC vdW interface using non-equilibrium molecular dynamics and transient pump probe methods. We find that the in-plane thermal conductivity κ deviates slightly from the 1/T law at high temperatures. A tunable κ is found with the variation of the interlayer coupling strength χ. The interlayer thermal resistance R across graphene/2D-SiC interface reaches 2.71 $$\times$$ × 10–7$${\text{Km}}^{2} /{\text{W}}$$ Km 2 / W at room temperature and χ = 1, and it reduces steadily with the elevation of system temperature and χ, demonstrating around 41% and 56% reduction with increasing temperature to 700 K and a χ of 25, respectively. We also elucidate the heat transport mechanism by estimating the in-plane and out-of-plane phonon modes. Higher phonon propagation possibility and Umklapp scattering across the interface at high temperatures and increased χ lead to the significant reduction of R. This work unveils the mechanism of heat transfer and interface thermal conductance engineering across the graphene/2D-SiC vdW heterostructure.

2020 ◽  
Author(s):  
Penghua Ying ◽  
Jin Zhang ◽  
Yao Du ◽  
Zheng Zhong

In this paper, we conduct a comprehensive investigation on the thermal transport in one-dimensional (1D) van der Waals (vdW) heterostructures by using non-equilibrium molecular dynamics simulations. It is found that the boron nitride nanotube (BNNT) coating can increase the thermal conductance of inner carbon nanotube (CNT) base by 36%, while the molybdenum disulfide nanotube (<a>MSNT</a>) coating can reduce the thermal conductance by 47%. The different effects of BNNT and MSNT coatings on the thermal transport behaviors of 1D vdW heterostructures are explained by the competition mechanism between improved heat flux and increased temperature gradient in 1D vdW heterostructures. By taking CNT@BNNT@MSNT as an example, thermal transport in 1D vdW heterostructures containing three layers is also investigated. It is found that the coaxial BNNT-MSNT coating can significantly reduce the thermal conductance of inner CNT base by 61%, which is even larger than that of an individual MSNT coating. This unexpected reduction in thermal conductance of CNT@BNNT@MSNT can be explained by the suppression of heat flux arising from the possible compression effect, since BNNT-MSNT coating in CNT@BNNT@MSNT can more significantly suppress the vibration of inner CNT when compared to the individual MSNT coating in CNT@MSNT. In addition to the in-plane thermal transport, the interfacial thermal conductance between inner and outer nanotubes in 1D vdW heterostructures is also examined to provide a quantitative understanding of the thermal transport behaviors of1D vdW heterostructures. This work is expected to provide molecular insights into tailoring the heat transport in carbon base 1D vdW heterostructures and thus facilitate their broader applications as thermal interface materials.


2020 ◽  
Author(s):  
Penghua Ying ◽  
Jin Zhang ◽  
Yao Du ◽  
Zheng Zhong

In this paper, we conduct a comprehensive investigation on the thermal transport in one-dimensional (1D) van der Waals (vdW) heterostructures by using non-equilibrium molecular dynamics simulations. It is found that the boron nitride nanotube (BNNT) coating can increase the thermal conductance of inner carbon nanotube (CNT) base by 36%, while the molybdenum disulfide nanotube (<a>MSNT</a>) coating can reduce the thermal conductance by 47%. The different effects of BNNT and MSNT coatings on the thermal transport behaviors of 1D vdW heterostructures are explained by the competition mechanism between improved heat flux and increased temperature gradient in 1D vdW heterostructures. By taking CNT@BNNT@MSNT as an example, thermal transport in 1D vdW heterostructures containing three layers is also investigated. It is found that the coaxial BNNT-MSNT coating can significantly reduce the thermal conductance of inner CNT base by 61%, which is even larger than that of an individual MSNT coating. This unexpected reduction in thermal conductance of CNT@BNNT@MSNT can be explained by the suppression of heat flux arising from the possible compression effect, since BNNT-MSNT coating in CNT@BNNT@MSNT can more significantly suppress the vibration of inner CNT when compared to the individual MSNT coating in CNT@MSNT. In addition to the in-plane thermal transport, the interfacial thermal conductance between inner and outer nanotubes in 1D vdW heterostructures is also examined to provide a quantitative understanding of the thermal transport behaviors of1D vdW heterostructures. This work is expected to provide molecular insights into tailoring the heat transport in carbon base 1D vdW heterostructures and thus facilitate their broader applications as thermal interface materials.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Changning Pan ◽  
Jun He ◽  
Diwu Yang ◽  
Keqiu Chen

Ballistic thermal transport properties are investigated comparatively for out-of-plane phonon modes (FPMs) and in-plane phonon modes (IPMs) in bended graphene nanoribbons (GNRs). Results show that the phonon modes transports can be modulated separately by the phonon dispersion mismatch between armchair and zigzag GNRs in considered system. The contribution of FPMs to total thermal conductance is larger than 50% in low temperature for perfect GNRs. But it becomes less than 20% in the bended GNRs. Furthermore, this contribution can be modulated by changing the structural parameters of the bended GNRs. The result is useful for the design of thermal or thermoelectric nanodevices in future.


2021 ◽  
Author(s):  
Mingxuan Jiang ◽  
Juan D. Olarte-Plata ◽  
Fernando Bresme

The Interfacial Thermal Conductance (ITC) is a fundamental property of mate- rials and has particular relevance at the nanoscale. The ITC quanti�es the thermal resistance between materials of dierent compositions or between uids in contact with materials. Furthermore, the ITC determines the rate of cooling/heating of the materi- als and the temperature drop across the interface. Here we propose a method to com- pute local ITCs and temperature drops of nanoparticle- uid interfaces. Our approach resolves the ITC at the atomic level using the atomic coordinates of the nanomaterial as nodes to compute local thermal transport properties. We obtain high-resolution descriptions of the interfacial thermal transport by combining the atomistic nodal ap- proach, computational geometry techniques and \computational farming" using Non- Equilibrium Molecular Dynamics simulations. We illustrate our method by analyzing various nanoparticles as a function of their size and geometry, targeting experimentally relevant structures like capped octagonal rods, cuboctahedrons, decahedrons, rhombic dodecahedrons, cubes, icosahedrons, truncated octahedrons, octahedrons and spheres. We show that the ITC of these very dierent geometries can be accurately described in terms of the local coordination number of the atoms in the nanoparticle surface. Nanoparticle geometries with lower surface coordination numbers feature higher ITCs, and the ITC generally increases with decreasing particle size.


Nanoscale ◽  
2019 ◽  
Vol 11 (30) ◽  
pp. 14155-14163 ◽  
Author(s):  
Haiying Yang ◽  
Yunqing Tang ◽  
Ping Yang

We implement non-equilibrium Green's function (NEGF) calculations to investigate thermal transport across graphene/metal interfaces with interlayer van der Waals interactions to understand the factors influencing thermal conductance across the interface.


Author(s):  
Liang Chen ◽  
Satish Kumar

The present study investigates the thermal transport in suspended graphene and graphene supported on copper substrate using equilibrium molecular dynamics simulations, Green-Kubo method and relaxation time approximation (RTA) approach. The thermal coupling between graphene and copper substrate was investigated by varying the interaction strength between the carbon atoms and Cu atoms at the interface. The contribution of different phonon modes to the thermal conductivity of suspended and supported graphene was analyzed in order to elucidate the graphene-substrate thermal interactions. The thermal conductivity of graphene decreases with the increasing strength of the interfacial interaction. The analysis shows that the interactions with copper substrate can reduce the thermal conductivity by up to 44%. The decrease of thermal conductivity is primarily due to the suppression of contribution from out-of-plane acoustic (ZA) phonons in the large wave vector region.


2009 ◽  
Vol 23 (30) ◽  
pp. 3597-3607 ◽  
Author(s):  
XIAO-YAN YU ◽  
XIAO-FANG PENG ◽  
KE-QIU CHEN

Thermal transport by ballistic phonon in a semiconductor rectangular quantum wire modulated with quantum dot at low temperatures is investigated with the use of the scattering matrix method. The calculated results show that the total transmission coefficient versus the reduced phonon frequency exhibits interesting characteristics such as inhomogeneous quantum transport steps. Quantized thermal conductance plateau can be observed at low temperatures, and the thermal conductance is not increased monotonically with increasing temperature. The results also show that the phonon transport probability and thermal conductance can be controlled to a certain degree by adjusting the parameters of the proposed quantum structure.


2021 ◽  
Author(s):  
Mingxuan Jiang ◽  
Juan D. Olarte-Plata ◽  
Fernando Bresme

The Interfacial Thermal Conductance (ITC) is a fundamental property of materials and has particular relevance at the nanoscale. The ITC quantifies the thermal resistance between materials of different compositions or between fluids in contact with materials. Furthermore, the ITC determines the rate of cooling/heating of the materials and the temperature drop across the interface. Here we propose a method to compute local ITCs and temperature drops of nanoparticle-fluid interfaces. Our approach resolves the ITC at the atomic level using the atomic coordinates of the nanomaterial as nodes to compute local thermal transport properties. We obtain high-resolution descriptions of the interfacial thermal transport by combining the atomistic nodal approach, computational geometry techniques and "computational farming'' using Non-Equilibrium Molecular Dynamics simulations. We illustrate our method by analyzing various nanoparticles as a function of their size and geometry, targeting experimentally relevant structures like capped octagonal rods, cuboctahedrons, decahedrons, rhombic dodecahedrons, cubes, icosahedrons, truncated octahedrons, octahedrons and spheres. We show that the ITC of these very different geometries can be accurately described in terms of the local coordination number of the atoms in the nanoparticle surface. Nanoparticle geometries with lower surface coordination numbers feature higher ITCs, and the ITC generally increases with decreasing particle size.


Author(s):  
Ting Liang ◽  
Ping Zhang ◽  
Peng Yuan ◽  
Man Zhou ◽  
Siping Zhai

Abstract The in-plane graphene/hexagonal boron nitride (Gr/h-BN) heterostructures have received extensive attention in recent years due to their excellent physical properties and the development potential of next-generation nanoelectronic devices. Generally, different bonding types between Gr and h-BN are considered in different non-equilibrium molecular dynamics (NEMD) simulations studies. However, which type of bonding is most conducive to interface thermal transport is still very confusing. In this work, we investigate the interfacial thermal conductance (ITC) and the thermal rectification (TR) in five different bonding types of in-plane Gr/h-BN heterostructures by using NEMD simulations. It is found that the ITC depends strongly on the bonding strength and arrangement of different atoms across the boundary. Among the five different bonding types of heterostructures, the C-N bonded heterojunction exhibits the highest ITC due to its stronger interfacial bonding. The analyses on the strain distribution indicated that a low interfacial stress level at the interface junction, may facilitate the heat conduction, thus leading to a higher ITC. In addition, we found that TR occurs in all five bonded heterostructures, and the C-B bonded heterojunction possesses the highest TR factor. The present study is of significance for understanding the thermal transport behavior of Gr/h-BN heterostructures and promoting their future applications in thermal management and thermoelectric devices.


Sign in / Sign up

Export Citation Format

Share Document