scholarly journals Non-local terahertz photoconductivity in the topological phase of Hg1−xCdxTe

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. S. Kazakov ◽  
A. V. Galeeva ◽  
A. I. Artamkin ◽  
A. V. Ikonnikov ◽  
L. I. Ryabova ◽  
...  

AbstractWe report on observation of strong non-local photoconducitivity induced by terahertz laser pulses in non-zero magnetic field in heterostructures based on Hg1−xCdxTe films being in the topological phase. While the zero-field non-local photoconductivity is negligible, it is strongly enhanced in magnetic fields ~ 0.05 T resulting in appearance of an edge photocurrent that exceeds the respective dark signal by orders of magnitude. This photocurrent is chiral, and the chirality changes every time the magnetic field or the electric bias is reversed. Appearance of the non-local terahertz photoconductivity is attributed to features of the interface between the topological film and the trivial buffer.

2015 ◽  
Vol 233-234 ◽  
pp. 741-744
Author(s):  
Sergey Mikhailovich Podgornykh

Effect of the magnetic prehistory on the temperature dependence of the heat capacity of the superconducting Pb, La, Sn. has been studied. As soon as the external magnetic field riches the valueHext=HCthe superconductivity is completely destroyed. The trapped flux was produced in the ring specimen after the magnetic field was turned off atT<TC. We observed a difference of the value of the heat capacity between zero field cooled (ZFC) and field cooled (FC) states in zero magnetic field for the ring specimen. It is found that the FC heat capacity is smaller than the heat capacity both in the normal and in superconducting states.


1987 ◽  
Vol 99 ◽  
Author(s):  
R. Durny ◽  
S. Ducharme ◽  
J. Hautala ◽  
O. G. Symko ◽  
P. C. Taylor ◽  
...  

ABSTRACTMicrowave absorption measurements from 20 to 80 K in magnetic fields up to 12 kG are reported. Below a certain characteristic temperature T* = 80 ± 2 K < Tc the absorption in magnetic-field-cooled samples is smaller and broader in comparison to the zero-field-cooled samples. The incident microwave radiation induces a dc voltage across the sample which is also magnetic field dependent and peaks at zero magnetic field.


2020 ◽  
Vol 62 (3) ◽  
pp. 390
Author(s):  
М.Р. Арифуллин ◽  
В.Л. Бердинский

Magnetization of paramagnetic ions with spin S=1 in solid state at zero magnetic field is shown can be created by pulse manipulation of electron spins rather than by external magnetic fields. For this purpose, crossed microwave pulses with different initial phases or pulses of finite duration are proposed. Resonance cases when the frequency of microwave pulses coincides with the frequency of level splitting in the zero field are described. The effect of magnetization pulse creation has some similarities with the alignment-orientation transformation observed in optical experiments.


2021 ◽  
Author(s):  
Iurii Kochetkov ◽  
Nikolai Bukharskii ◽  
Michael Ehret ◽  
Yuki Abe ◽  
Farley Law ◽  
...  

Abstract Optical generation of kilo-tesla scale magnetic fields enables prospective technologies and fundamental studies with unprecedentedly high magnetic field energy density. A question is the optimal configuration of proposed setups, where plenty of physical phenomena accompany the generation and complicate both theoretical studies and experimental realizations. Short laser drivers seem more suitable in many applications, though the process is tangled by an intrinsic transient nature. In this work, an artificial neural network is engaged for unravelling main features of the magnetic field excited with a picosecond laser pulse. The trained neural network acquires an ability to read the magnetic field values from experimental data, extremely facilitating interpretation of the experimental results. The conclusion is that the short sub-picosecond laser pulse may generate a quasi-stationary magnetic field structure living on a hundred picosecond time scale, when the induced current forms a closed circuit.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust &amp; Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust &amp; Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


1970 ◽  
Vol 39 ◽  
pp. 168-183
Author(s):  
E. N. Parker

The topic of this presentation is the origin and dynamical behavior of the magnetic field and cosmic-ray gas in the disk of the Galaxy. In the space available I can do no more than mention the ideas that have been developed, with but little explanation and discussion. To make up for this inadequacy I have tried to give a complete list of references in the written text, so that the interested reader can pursue the points in depth (in particular see the review articles Parker, 1968a, 1969a, 1970). My purpose here is twofold, to outline for you the calculations and ideas that have developed thus far, and to indicate the uncertainties that remain. The basic ideas are sound, I think, but, when we come to the details, there are so many theoretical alternatives that need yet to be explored and so much that is not yet made clear by observations.


Sign in / Sign up

Export Citation Format

Share Document