scholarly journals Secreted Frizzled Related Proteins in Cardiovascular and Metabolic Diseases

2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Guan ◽  
Jin Zhang ◽  
Jing Luan ◽  
Hao Xu ◽  
Zhenghao Huang ◽  
...  

Abnormal gene expression and secreted protein levels are accompanied by extensive pathological changes. Secreted frizzled related protein (SFRP) family members are antagonistic inhibitors of the Wnt signaling pathway, and they were recently found to be involved in the pathogenesis of a variety of metabolic diseases, which has led to extensive interest in SFRPs. Previous reports highlighted the importance of SFRPs in lipid metabolism, obesity, type 2 diabetes mellitus and cardiovascular diseases. In this review, we provide a detailed introduction of SFRPs, including their structural characteristics, receptors, inhibitors, signaling pathways and metabolic disease impacts. In addition to summarizing the pathologies and potential molecular mechanisms associated with SFRPs, this review further suggests the potential future use of SFRPs as disease biomarkers therapeutic targets.

2021 ◽  
Author(s):  
Roderick C Slieker ◽  
Louise A Donnelly ◽  
Hugo Fitipaldi ◽  
Gerard A Bouland ◽  
Giuseppe N. Giordano ◽  
...  

Type 2 diabetes is a multifactorial disease with multiple underlying aetiologies. To address this heterogeneity a previous study clustered people with diabetes into five diabetes subtypes. The aim of the current study is to investigate the aetiology of these clusters by comparing their molecular signatures. In three independent cohorts, in total 15,940 individuals were clustered based on five clinical characteristics. In a subset, genetic- (N=12828), metabolomic- (N=2945), lipidomic- (N=2593) and proteomic (N=1170) data were obtained in plasma. In each datatype each cluster was compared with the other four clusters as the reference. The insulin resistant cluster showed the most distinct molecular signature, with higher BCAAs, DAG and TAG levels and aberrant protein levels in plasma enriched for proteins in the intracellular PI3K/Akt pathway. The obese cluster showed higher cytokines. A subset of the mild diabetes cluster with high HDL showed the most beneficial molecular profile with opposite effects to those seen in the insulin resistant cluster. This study showed that clustering people with type 2 diabetes can identify underlying molecular mechanisms related to pancreatic islets, liver, and adipose tissue metabolism. This provides novel biological insights into the diverse aetiological processes that would not be evident when type 2 diabetes is viewed as a homogeneous disease


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 859 ◽  
Author(s):  
Jean-François Landrier ◽  
Adel Derghal ◽  
Lourdes Mounien

Metabolic disorders are characterized by the inability to properly use and/or store energy. The burdens of metabolic disease, such as obesity or diabetes, are believed to arise through a complex interplay between genetics and epigenetics predisposition, environment and nutrition. Therefore, understanding the molecular mechanisms for the onset of metabolic disease will provide new insights for prevention and treatment. There is growing concern about the dysregulation of micro-RNAs (miRNAs) in metabolic diseases. MiRNAs are short non-coding RNA molecules that post-transcriptionally repress the expression of genes by binding to untranslated regions and coding sequences of the target mRNAs. This review aims to provide recent data about the potential involvement of miRNAs in metabolic diseases, particularly obesity and type 2 diabetes.


2021 ◽  
Vol 9 (1) ◽  
pp. e002211
Author(s):  
Abu Saleh Md Moin ◽  
Hassan Kahal ◽  
Ahmed Al-Qaissi ◽  
Nitya Kumar ◽  
Thozhukat Sathyapalan ◽  
...  

IntroductionHypoglycemia in type 2 diabetes (T2D) may increase risk for Alzheimer’s disease (AD), but no data on changes in AD-related proteins with differing degrees of hypoglycemia exist. We hypothesized that milder prolonged hypoglycemia would cause greater AD-related protein changes versus severe transient hypoglycemia.Research design and methodsTwo prospective case-control induced hypoglycemia studies were compared: study 1, hypoglycemic clamp to 2.8 mmol/L (50 mg/dL) for 1 hour in 17 subjects (T2D (n=10), controls (n=7)); study 2, hypoglycemic clamp to 2.0 mmol/L (36 mg/dL) undertaken transiently and reversed in 46 subjects (T2D (n=23), controls (n=23)). Blood sampling at baseline, hypoglycemia and 24-hour post-hypoglycemia, with proteomic analysis of amyloid-related proteins performed.ResultsIn control subjects, the percentage change from baseline to hypoglycemia differed between study 1 and study 2 for 5 of 11 proteins in the AD-related panel: serum amyloid A1 (SAA1) (p=0.009), pappalysin (PAPPA) (p=0.002), apolipoprotein E2 (p=0.02), apolipoprotein E3 (p=0.03) and apolipoprotein E4 (p=0.02). In controls, the percentage change from baseline to 24 hours differed between studies for two proteins: SAA1 (p=0.003) and PAPPA (p=0.004); however, after Bonferroni correction only SAA1 and PAPPA remain significant. In T2D, there were no differential protein changes between the studies.ConclusionsThe differential changes in AD-related proteins were seen only in control subjects in response to iatrogenic induction of hypoglycemic insults of differing length and severity and may reflect a protective response that was absent in subjects with T2D. Milder prolonged hypoglycemia caused greater AD-related protein changes than severe acute hypoglycemia in control subjects.Trial registration numbersNCT02205996, NCT03102801.


Author(s):  
Martin Benzler ◽  
Jonas Benzler ◽  
Sigrid Stoehr ◽  
Cindy Hempp ◽  
Mohammed Z. Rizwan ◽  
...  

Saturated fatty acids are implicated in the development of metabolic diseases, including obesity and type 2 diabetes. There is evidence, however, that polyunsaturated fatty acids can counteract the pathogenic effects of saturated fatty acids. To gain insight into the early molecular mechanisms by which fatty acids influence hypothalamic inflammation and insulin resistance, we performed time-course experiments in a hypothalamic cell line, using different durations of treatment with the saturated fatty acid palmitate, and the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA). Western blot analysis revealed that palmitate elevated the protein levels of phospho(p)AKT in a time-dependent manner. This effect seems involved in the pathogenicity of palmitate, as temporary inhibition of the PI3K/AKT pathway by selective PI3K inhibitors prevented palmitate-induced insulin resistance. Similarly to palmitate, DHA also increased levels of pAKT, but to a weaker extent. Co-administration of DHA with palmitate decreased pAKT close to the basal level after 8 h, and prevented palmitate-induced insulin resistance after 12 h. Measurement of the inflammatory markers pJNK and pNFκB-p65 revealed tonic elevation of both markers in the presence of palmitate alone. DHA alone transiently induced elevation of pJNK, returning to basal levels by 12 h treatment. Co-administration of DHA with palmitate prevented palmitate-induced inflammation after 12 h, but not at earlier time points.


2021 ◽  
Author(s):  
Roderick C Slieker ◽  
Louise A Donnelly ◽  
Hugo Fitipaldi ◽  
Gerard A Bouland ◽  
Giuseppe N. Giordano ◽  
...  

Type 2 diabetes is a multifactorial disease with multiple underlying aetiologies. To address this heterogeneity a previous study clustered people with diabetes into five diabetes subtypes. The aim of the current study is to investigate the aetiology of these clusters by comparing their molecular signatures. In three independent cohorts, in total 15,940 individuals were clustered based on five clinical characteristics. In a subset, genetic- (N=12828), metabolomic- (N=2945), lipidomic- (N=2593) and proteomic (N=1170) data were obtained in plasma. In each datatype each cluster was compared with the other four clusters as the reference. The insulin resistant cluster showed the most distinct molecular signature, with higher BCAAs, DAG and TAG levels and aberrant protein levels in plasma enriched for proteins in the intracellular PI3K/Akt pathway. The obese cluster showed higher cytokines. A subset of the mild diabetes cluster with high HDL showed the most beneficial molecular profile with opposite effects to those seen in the insulin resistant cluster. This study showed that clustering people with type 2 diabetes can identify underlying molecular mechanisms related to pancreatic islets, liver, and adipose tissue metabolism. This provides novel biological insights into the diverse aetiological processes that would not be evident when type 2 diabetes is viewed as a homogeneous disease


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Ling-Bin Liu ◽  
Xiao-Dong Chen ◽  
Xiang-Yu Zhou ◽  
Qing Zhu

Various reports have suggested that secreted frizzled-related protein (SFRP) 5 (SFRP5) plays a regulatory role in the processes of cellular proliferation and differentiation, by means of inactivating the Wnt/β-catenin signaling pathway. Recently, SFRP5 has been identified as an anti-inflammatory adipokine, which may be induced during preadipocyte proliferation, differentiation, and maturation. This review aims to identify the recent progress in the research and development of SFRP5 that can play a role in influencing lipid metabolism, inflammation, and type 2 diabetes mellitus (T2DM). Recent evidence has indicated that SFRP5 is capable of stimulating adipocyte differentiation via inhibition of the Wnt/β-catenin signaling pathway. In addition, SFRP5 binding with wingless-type murine mammary tumor virus integration site family, member 5A (Wnt5a), inhibits the activation of c-Jun N-terminal kinase (JNK) downstream of the Wnt signaling pathway. An antagonistic relationship has been found between the reductions in inflammatory cytokine production and serine phosphorylation of insulin receptor substrate-1 (IRS-1) in regard to inhibition of insulin signaling network. By this mechanism, SFRP5 exerts its influence on metabolic function. Based on our review of the current available literature, we support the notion that SFRP5 can be used as a therapeutic target in the treatment of T2DM.


2017 ◽  
Vol 42 (5) ◽  
pp. 2130-2143 ◽  
Author(s):  
Ying Yang ◽  
Si Liu ◽  
Rong-Yi Zhang ◽  
Hui Luo ◽  
Ling Chen ◽  
...  

Background/Aims: C1q and tumour necrosis factor-related protein 1 (CTRP1) possesses anti-atherogenic and anti-inflammatory effects. This study investigated whether the CTRP1 levels in the plasma and epicardial adipose tissue (EAT) were associated with congestive heart failure (CHF) and to disclose possible molecular mechanisms. Methods: Plasma and tissue samples were obtained from subjects with or without CHF. Plasma levels of CTRP1 were measured by ELISA. The mRNA levels of CTRP1 and inflammatory cytokines were detected by RT-PCR. The protein levels of CTRP1, aldosterone synthase (CYP11B2) and mitogen-activated protein kinase were examined by Western blotting. Results: The levels of CTRP1 in the plasma and EAT were higher in the CHF patients than those in the controls. There were no differences in the CTRP1 levels in cardiomyocytes between the CHF group and the non-CHF group. An exploratory survival analysis showed that higher CTRP1 values at admission were associated with a worse prognosis after discharge. CTRP1 increased the IL-6 mRNA level in H295R cells. CTRP1 recruited ERK1/2 and Jak-2 for aldosterone release by modulating the CYP11B2 protein level, and brain natriuretic peptide repressed the CTRP1-induced aldosterone release through the JAK2-STAT3 signalling pathways. Conclusion: The CTRP1 levels in the plasma and EAT were increased in the CHF patients. CTRP1 is involved in the pathogenesis of CHF by modulating IL-6 levels and aldosterone release.


2018 ◽  
Author(s):  
Shiying Hao ◽  
Jin You ◽  
Lin Chen ◽  
Hui Zhao ◽  
Yujuan Huang ◽  
...  

ABSTRACTBackgroundPlacental protein expression plays a crucial biological role during normal and complicated pregnancies. We hypothesized that: (1) circulating pregnancy-associated, placenta-related protein levels throughout gestation reflect the uncomplicated, full-term temporal progression of human gestation, and effectively estimates gestational ages (GAs); (2) pregnancies with underlying placental pathology, such as preeclampsia (PE), are associated with disruptions in this GA estimation in early gestation; (3) malfunctions of this GA estimation can be employed to identify impending PE. In addition, to explore the underlying biology and PE etiology, we set to compare protein gestational patterns of human and mouse, using pregnant heme oxygenase-1 (HO-1) heterozygote (Het) mice, a mouse model reflecting PE-like symptoms.MethodsSerum levels of circulating placenta-related proteins – leptin (LEP), chorionic somatomammotropin hormone like 1 (CSHL1), elabela (ELA), activin A, soluble fms-like tyrosine kinase 1 (sFlt-1), and placental growth factor (PlGF)– were quantified by ELISA in blood serially collected throughout human pregnancies (20 normal subjects with 66 samples, and 20 PE subjects with 61 samples). Linear multivariate analysis of the targeted serological protein levels was performed to estimate the normal GA. Logarithmic transformed mean-squared errors of GA estimations were used to identify impending PE. Then the human gestational protein patterns were compared to those in the pregnant HO-1 mice.ResultsAn elastic net (EN)-based gestational dating model was developed (R2 = 0.76) and validated (R2 = 0.61) using the serum levels of the 6 proteins at various GAs from women with normal uncomplicated pregnancies (n = 10 for training and n = 6 for validation). In pregnancies complicated by PE (n = 14), the EN model was not (R2 = −0.17) associated with GA at sampling in PE. Statistically significant deviations from the normal GA EN model estimations were observed in PE-associated pregnancies between GAs of 16–30 weeks (P = 0.01). The EN model developed with 5 proteins (ELA excluded due to the lack of robustness of the mouse ELA essay) performed similarly on normal human (R2 = 0.68) and WT mouse (R2 = 0.85) pregnancies. Disruptions of this model were observed in both human PE-associated (human: R2 = 0.27) and mouse HO-1 Het (mouse: R2 = 0.30) pregnancies. LEP out performed sFlt-1 and PlGF in differentiating impending PE at early human and late mouse gestations.ConclusionsAs revealed in both human and mouse GA EN analyses, temporal serological placenta-related protein patterns are tightly regulated throughout normal human pregnancies and can be significantly disrupted in pathologic PE states. LEP changes earlier during gestation than the well-established late GA PE biomarkers (sFlt-1 and PlGF). Our HO-1 Het mouse analysis provides direct evidence of the causative action of HO-1 deficiency in LEP upregulation in a PE-like murine model. Therefore, longitudinal analyses of pregnancy-related protein patterns in sera, may not only help in the exploration of underlying PE pathophysiology but also provide better clinical utility in PE assessment.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ersilia Nigro ◽  
Fabio Perrotta ◽  
Rita Polito ◽  
Vito D’Agnano ◽  
Filippo Scialò ◽  
...  

Coronavirus disease (COVID-19) is caused by SARS-CoV-2 virus, which can result in serious respiratory illnesses such as pneumonia leading to respiratory failure. It was first reported in Wuhan, Hubei, China, in December 2019 and rapidly spread globally, becoming a pandemic in March 2020. Among comorbidities observed in SARS-CoV-2 positive patients, hypertension (68.3%) and type 2-diabetes (30.1%) are the most frequent conditions. Although symptoms are highly heterogeneous (ranging from absence of symptoms to severe acute respiratory failure), patients with metabolic-associated diseases often experience worse COVID-19 outcomes. This review investigates the association between metabolic disorders and COVID-19 severity, exploring the molecular mechanisms potentially underlying this relationship and those that are responsible for more severe COVID-19 outcomes. In addition, the role of the main biological processes that may connect metabolic alterations to SARS-CoV-2 infection such as hyperglycemia, immune system deregulation, ACE-2 receptor modulation, and inflammatory response is described. The impact of metabolic disorders on the prognosis of COVID-19 has major implications in public health especially for countries affected by a high incidence of metabolic diseases.


2020 ◽  
Vol 83 (1) ◽  
Author(s):  
Bhagirath Chaurasia ◽  
Scott A. Summers

The global prevalence of metabolic diseases such as type 2 diabetes mellitus, steatohepatitis, myocardial infarction, and stroke has increased dramatically over the past two decades. These obesity-fueled disorders result, in part, from the aberrant accumulation of harmful lipid metabolites in tissues not suited for lipid storage (e.g., the liver, vasculature, heart, and pancreatic beta-cells). Among the numerous lipid subtypes that accumulate, sphingolipids such as ceramides are particularly impactful, as they elicit the selective insulin resistance, dyslipidemia, and ultimately cell death that underlie nearly all metabolic disorders. This review summarizes recent findings on the regulatory pathways controlling ceramide production, the molecular mechanisms linking the lipids to these discrete pathogenic events, and exciting attempts to develop therapeutics to reduce ceramide levels to combat metabolic disease. Expected final online publication date for the Annual Review of Physiology, Volume 83 is February 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document