scholarly journals Competing nucleation of single- and double-layer Guinier–Preston zones in Al–Cu alloys

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroshi Miyoshi ◽  
Hajime Kimizuka ◽  
Akio Ishii ◽  
Shigenobu Ogata

AbstractSolid-state precipitation is a key heat-treatment strategy for strengthening engineering alloys. Therefore, predicting the precipitation process of localized solute-rich clusters, such as Guinier–Preston (GP) zones, is necessary. We quantitatively evaluated the critical nucleus size and nucleation barrier of GP zones in Al–Cu alloys, illustrating the precipitation preferences of single-layer (GP1) and double-layer (GP2) GP zones. Based on classical nucleation theory using an effective multi-body potential for dilute Al–Cu systems, our model predicted GP1 and GP2 precipitation sequences at various temperatures and Cu concentrations in a manner consistent with experimental observations. The crossover between formation enthalpy curves of GP1 and GP2 with increasing cluster size determines the critical conditions under which GP2 zones can nucleate without prior formation of GP1 zones. This relationship reflects competing interactions within and between clusters. The results illustrate the underlying mechanisms of competing nucleation between zones, and provide guidance for tailoring aging conditions to achieve desired mechanical properties for specific applications.

Author(s):  
M.J. Witcomb ◽  
U. Dahmen ◽  
M.A. O'Keefe ◽  
K.H. Westmacott

Dilute Pt-C alloys are prototypical for studying oversize carbide phase precipitation from interstitial solid solution. Earlier studies showed the essential function of quenched-in vacancies in the precipitation process. Vacancies play a dual, volume accommodation and structural, role in the transformation by modifying both the habit plane spacing and stacking sequence. It was also shown how the precipitation sequence in interstitial Pt-C alloys is analogous to that in substitutional Al-Cu alloys. Initially a “GP zone” consisting of a monolayer plate of carbon atoms and vacancies forms. Atomic resolution images of the socalled a precipitates have confirmed their structure. During subsequent coarsening of the precipitates, α’ platelets form. Schematic diagrams illustrating the α and α’ structures in <100> projection are given in Fig. 1. The single-layer a structure, or GP zone is identical to a ﹛100﹜ stacking fault stabilized by an intercalation of carbon. The two-layer α’ structure is the first true precipitate phase and has a crystal structure anti-isomorphous with calcium fluoride.


Author(s):  
Shuai Liang ◽  
Kyle Wm. Hall ◽  
Aatto Laaksonen ◽  
Zhengcai Zhang ◽  
Peter G. Kusalik

Crystallization in liquids is critical to a range of important processes occurring in physics, chemistry and life sciences. In this article, we review our efforts towards understanding the crystallization mechanisms, where we focus on theoretical modelling and molecular simulations applied to ice and gas hydrate systems. We discuss the order parameters used to characterize molecular ordering processes and how different order parameters offer different perspectives of the underlying mechanisms of crystallization. With extensive simulations of water and gas hydrate systems, we have revealed unexpected defective structures and demonstrated their important roles in crystallization processes. Nucleation of gas hydrates can in most cases be characterized to take place in a two-step mechanism where the nucleation occurs via intermediate metastable precursors, which gradually reorganizes to a stable crystalline phase. We have examined the potential energy landscapes explored by systems during nucleation, and have shown that these landscapes are rugged and funnel-shaped. These insights provide a new framework for understanding nucleation phenomena that has not been addressed in classical nucleation theory. This article is part of the theme issue ‘The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets’.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 93-99
Author(s):  
SEYYED MOHAMMAD HASHEMI NAJAFI ◽  
DOUGLAS BOUSFIELD, ◽  
MEHDI TAJVIDI

Cracking at the fold of publication and packaging paper grades is a serious problem that can lead to rejection of product. Recent work has revealed some basic mechanisms and the influence of various parameters on the extent of crack area, but no studies are reported using coating layers with known mechanical properties, especially for double-coated systems. In this study, coating layers with different and known mechanical properties were used to characterize crack formation during folding. The coating formulations were applied on two different basis weight papers, and the coated papers were folded. The binder systems in these formulations were different combinations of a styrene-butadiene latex and mixtures of latex and starch for two different pigment volume concentrations (PVC). Both types of papers were coated with single and double layers. The folded area was scanned with a high-resolution scanner while the samples were kept at their folded angle. The scanned images were analyzed within a constant area. The crack areas were reported for different types of papers, binder system and PVC values. As PVC, starch content, and paper basis weight increased, the crack area increased. Double layer coated papers with high PVC and high starch content at the top layer had more cracks in comparison with a single layer coated paper, but when the PVC of the top layer was low, cracking area decreased. No measurable cracking was observed when the top layer was formulated with a 100% latex layer.


2009 ◽  
Author(s):  
Alvaro Sanabria ◽  
Gabriel Gomez ◽  
Eduardo Valdivieso ◽  
C Bermudez

2005 ◽  
Author(s):  
Alvaro Sanabria ◽  
Gabriel Gomez ◽  
Eduardo Valdivieso ◽  
C Bermudez

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Min Yang ◽  
Lu Wang ◽  
Wentao Yan

AbstractA three-dimensional phase-field model is developed to simulate grain evolutions during powder-bed-fusion (PBF) additive manufacturing, while the physically-informed temperature profile is implemented from a thermal-fluid flow model. The phase-field model incorporates a nucleation model based on classical nucleation theory, as well as the initial grain structures of powder particles and substrate. The grain evolutions during the three-layer three-track PBF process are comprehensively reproduced, including grain nucleation and growth in molten pools, epitaxial growth from powder particles, substrate and previous tracks, grain re-melting and re-growth in overlapping zones, and grain coarsening in heat-affected zones. A validation experiment has been carried out, showing that the simulation results are consistent with the experimental results in the molten pool and grain morphologies. Furthermore, the grain refinement by adding nanoparticles is preliminarily reproduced and compared against the experimental result in literature.


Sign in / Sign up

Export Citation Format

Share Document