scholarly journals Quantifying genetic heterogeneity between continental populations for human height and body mass index

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Guo ◽  
Andrew Bakshi ◽  
Ying Wang ◽  
Longda Jiang ◽  
Loic Yengo ◽  
...  

AbstractGenome-wide association studies (GWAS) in samples of European ancestry have identified thousands of genetic variants associated with complex traits in humans. However, it remains largely unclear whether these associations can be used in non-European populations. Here, we seek to quantify the proportion of genetic variation for a complex trait shared between continental populations. We estimated the between-population correlation of genetic effects at all SNPs ($$r_{g}$$ r g ) or genome-wide significant SNPs ($$r_{{g\left( {GWS} \right)}}$$ r g GWS ) for height and body mass index (BMI) in samples of European (EUR; $$n = 49,839$$ n = 49 , 839 ) and African (AFR; $$n = 17,426$$ n = 17 , 426 ) ancestry. The $$\hat{r}_{g}$$ r ^ g between EUR and AFR was 0.75 ($${\text{s}}.{\text{e}}. = 0.035$$ s . e . = 0.035 ) for height and 0.68 ($${\text{s}}.{\text{e}}. = 0.062$$ s . e . = 0.062 ) for BMI, and the corresponding $$\hat{r}_{{g\left( {GWS} \right)}}$$ r ^ g GWS was 0.82 ($${\text{s}}.{\text{e}}. = 0.030$$ s . e . = 0.030 ) for height and 0.87 ($${\text{s}}.{\text{e}}. = 0.064$$ s . e . = 0.064 ) for BMI, suggesting that a large proportion of GWAS findings discovered in Europeans are likely applicable to non-Europeans for height and BMI. There was no evidence that $$\hat{r}_{g}$$ r ^ g differs in SNP groups with different levels of between-population difference in allele frequency or linkage disequilibrium, which, however, can be due to the lack of power.

2019 ◽  
Author(s):  
Jing Guo ◽  
Andrew Bakshi ◽  
Ying Wang ◽  
Longda Jiang ◽  
Loic Yengo ◽  
...  

AbstractGenome-wide association studies (GWAS) in samples of European ancestry have identified thousands of genetic variants associated with complex traits in humans. However, it remains largely unclear whether these associations can be used in non-European populations. Here, we seek to quantify the proportion of genetic variation for a complex trait shared between continental populations. We estimated the between-population correlation of genetic effects at all SNPs (rg) or genome-wide significant SNPs (rg(GWS)) for height and body mass index (BMI) in samples of European (EUR; n = 49,839) and African (AFR; n = 17,426) ancestry. The between EUR and AFR was 0.75 (s. e. = 0.035) for height and 0.68 (s. e. = 0.062) for BMI, and the corresponding was 0.82 (s. e. = 0.030) for height and 0.87 (s. e. = 0.064) for BMI, suggesting that a large proportion of GWAS findings discovered in Europeans are likely applicable to non-Europeans for height and BMI. There was no evidence that differs in SNP groups with different levels of between-population difference in allele frequency or linkage disequilibrium, which, however, can be due to the lack of power.


2018 ◽  
Vol 27 (20) ◽  
pp. 3641-3649 ◽  
Author(s):  
Loic Yengo ◽  
Julia Sidorenko ◽  
Kathryn E Kemper ◽  
Zhili Zheng ◽  
Andrew R Wood ◽  
...  

2018 ◽  
Author(s):  
Loic Yengo ◽  
Julia Sidorenko ◽  
Kathryn E. Kemper ◽  
Zhili Zheng ◽  
Andrew R. Wood ◽  
...  

Genome-wide association studies (GWAS) stand as powerful experimental designs for identifying DNA variants associated with complex traits and diseases. In the past decade, both the number of such studies and their sample sizes have increased dramatically. Recent GWAS of height and body mass index (BMI) in ∼250,000 European participants have led to the discovery of ∼700 and ∼100 nearly independent SNPs associated with these traits, respectively. Here we combine summary statistics from those two studies with GWAS of height and BMI performed in ∼450,000 UK Biobank participants of European ancestry. Overall, our combined GWAS meta-analysis reaches N∼700,000 individuals and substantially increases the number of GWAS signals associated with these traits. We identified 3,290 and 716 near-independent SNPs associated with height and BMI, respectively (at a revised genome-wide significance threshold of p<1 × 10−8), including 1,185 height-associated SNPs and 554 BMI-associated SNPs located within loci not previously identified by these two GWAS. The genome-wide significant SNPs explain ∼24.6% of the variance of height and ∼5% of the variance of BMI in an independent sample from the Health and Retirement Study (HRS). Correlations between polygenic scores based upon these SNPs with actual height and BMI in HRS participants were 0.44 and 0.20, respectively. From analyses of integrating GWAS and eQTL data by Summary-data based Mendelian Randomization (SMR), we identified an enrichment of eQTLs amongst lead height and BMI signals, prioritisting 684 and 134 genes, respectively. Our study demonstrates that, as previously predicted, increasing GWAS sample sizes continues to deliver, by discovery of new loci, increasing prediction accuracy and providing additional data to achieve deeper insight into complex trait biology. All summary statistics are made available for follow up studies.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-215742
Author(s):  
Sanghun Lee ◽  
Jessica Lasky-Su ◽  
Sungho Won ◽  
Cecelia Laurie ◽  
Juan Carlos Celedón ◽  
...  

Most genome-wide association studies of obesity and body mass index (BMI) have so far assumed an additive mode of inheritance in their analysis, although association testing supports a recessive effect for some of the established loci, for example, rs1421085 in FTO. In two whole-genome sequencing (WGS) studies of children with asthma and their parents (892 Costa Rican trios and 286 North American trios), we discovered an association between a locus (rs9292139) in LOC102724122 and BMI that reaches genome-wide significance under a recessive model in the combined analysis. As the association does not achieve significance under an additive model, our finding illustrates the benefits of the recessive model in WGS analyses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adrienne Tin ◽  
Pascal Schlosser ◽  
Pamela R. Matias-Garcia ◽  
Chris H. L. Thio ◽  
Roby Joehanes ◽  
...  

AbstractElevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E–7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits.


2010 ◽  
Vol 13 (2) ◽  
pp. 179-193 ◽  
Author(s):  
Jimmy Z. Liu ◽  
Sarah E. Medland ◽  
Margaret J. Wright ◽  
Anjali K. Henders ◽  
Andrew C. Heath ◽  
...  

AbstractHuman height and body mass index are influenced by a large number of genes, each with small effects, along with environment. To identify common genetic variants associated with these traits, we performed genome-wide association studies in 11,536 individuals composed of Australian twins, family members, and unrelated individuals at ∼550,000 genotyped SNPs. We identified a single genome-wide significant variant for height (Pvalue = 1.06 × 10–9) located inHHIP, a well-replicated height-associated gene. Suggestive levels of association were found for other known genes associated with height (Pvalues < 1 × 10–6):ADAMTSL3,EFEMP1,GPR126, andHMGA2; and BMI (Pvalues < 1 × 10–4):FTOandMC4R. Together, these variants explain less than 2% of total phenotypic variation for height and 0.5% for BMI.


2020 ◽  
Vol 34 (5) ◽  
pp. 524-531 ◽  
Author(s):  
Sophie E ter Hark ◽  
Stéphane Jamain ◽  
Dick Schijven ◽  
Bochao D Lin ◽  
Mark K Bakker ◽  
...  

Background: Antipsychotic-induced weight gain is a common and debilitating side effect of antipsychotics. Although genome-wide association studies of antipsychotic-induced weight gain have been performed, few genome-wide loci have been discovered. Moreover, these genome-wide association studies have included a wide variety of antipsychotic compounds. Aims: We aim to gain more insight in the genomic loci affecting antipsychotic-induced weight gain. Given the variable pharmacological properties of antipsychotics, we hypothesized that targeting a single antipsychotic compound would provide new clues about genomic loci affecting antipsychotic-induced weight gain. Methods: All subjects included for this genome-wide association study ( n=339) were first-episode schizophrenia spectrum disorder patients treated with amisulpride and were minimally medicated (defined as antipsychotic use <2 weeks in the previous year and/or <6 weeks lifetime). Weight gain was defined as the increase in body mass index from before until approximately 1 month after amisulpride treatment. Results: Our genome-wide association analyses for antipsychotic-induced weight gain yielded one genome-wide significant hit (rs78310016; β=1.05; p=3.66 × 10−08; n=206) in a locus not previously associated with antipsychotic-induced weight gain or body mass index. Minor allele carriers had an odds ratio of 3.98 ( p=1.0 × 10−03) for clinically meaningful antipsychotic-induced weight gain (⩾7% of baseline weight). In silico analysis elucidated a chromatin interaction with 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1. In an attempt to replicate single-nucleotide polymorphisms previously associated with antipsychotic-induced weight gain, we found none were associated with amisulpride-induced weight gain. Conclusion: Our findings suggest the involvement of rs78310016 and possibly 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 in antipsychotic-induced weight gain. In line with the unique binding profile of this atypical antipsychotic, our findings furthermore hint that biological mechanisms underlying amisulpride-induced weight gain differ from antipsychotic-induced weight gain by other atypical antipsychotics.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246436
Author(s):  
Zhaoying Li ◽  
Weijing Wang ◽  
Xiaocao Tian ◽  
Haiping Duan ◽  
Chunsheng Xu ◽  
...  

Recently, new loci related to body mass index (BMI) or blood pressure (BP) have been identified respectively in genome-wide association studies (GWAS). However, limited studies focused on jointly associated genetic variance between systolic pressure (SBP), diastolic pressure (DBP) and BMI. Therefore, a bivariate twin study was performed to explore the genetic variants associated with BMI-SBP, BMI-DBP and SBP-DBP. A total of 380 twin pairs (137 dizygotic pairs and 243 monozygotic pairs) recruited from Qingdao Twin Registry system were used to access the genetic correlations (0.2108 for BMI-SBP, 0.2345 for BMI-DBP, and 0.6942 for SBP-DBP, respectively) by bivariate Cholesky decomposition model. Bivariate GWAS in 137 dizygotic pairs nominated 27 single identified 27 quantitative trait nucleotides (QTNs) for BMI and SBP, 27 QTNs for BMI and DBP, and 25 QTNs for SBP and DBP with the suggestive P-value threshold of 1×10−5. After imputation, we found eight SNPs, one for both BMI-SBP and SBP-DBP, and eight for SBP-DBP, exceed significant statistic level. Expression quantitative trait loci analysis identified rs4794029 as new significant eQTL in tissues related to BMI and SBP. Also, we found 6 new significant eQTLs (rs4400367, rs10113750, rs11776003, rs3739327, rs55978930, and rs4794029) in tissues were related to SBP and DBP. Gene-based analysis identified nominally associated genes (P < 0.05) with BMI-SBP, BMI-DBP, and SBP-DBP, respectively, such as PHOSPHO1, GNGT2, KEAP1, and S1PR5. In the pathway analysis, we found some pathways associated with BMI-SBP, BMI-DBP and SBP-DBP, such as prion diseases, IL5 pathway, cyclin E associated events during G1/S transition, TGF beta signaling pathway, G βγ signaling through PI3Kγ, prolactin receptor signaling etc. These findings may enrich the results of genetic variants related to BMI and BP traits, and provide some evidences to future study the pathogenesis of hypertension and obesity in the northern Chinese population.


2021 ◽  
Author(s):  
Mark J. O’Connor ◽  
Philip Schroeder ◽  
Alicia Huerta-Chagoya ◽  
Paula Cortés-Sánchez ◽  
Silvía Bonàs-Guarch ◽  
...  

Most genome-wide association studies (GWAS) of complex traits are performed using models with additive allelic effects. Hundreds of loci associated with type 2 diabetes have been identified using this approach. Additive models, however, can miss loci with recessive effects, thereby leaving potentially important genes undiscovered. We conducted the largest GWAS meta-analysis using a recessive model for type 2 diabetes. Our discovery sample included 33,139 cases and 279,507 controls from seven European-ancestry cohorts including the UK Biobank. We identified 51 loci associated with type 2 diabetes, including five variants undetected by prior additive analyses. Two of the five had minor allele frequency less than 5% and were each associated with more than doubled risk in homozygous carriers. Using two additional cohorts, FinnGen and a Danish cohort, we replicated three of the variants, including one of the low-frequency variants, rs115018790, which had an odds ratio in homozygous carriers of 2.56 (95% CI 2.05-3.19, <i>P</i>=1´10<sup>-16</sup>) and a stronger effect in men than in women (interaction <i>P</i>=7´10<sup>-7</sup>). The signal was associated with multiple diabetes-related traits, with homozygous carriers showing a 10% decrease in LDL and a 20% increase in triglycerides, and colocalization analysis linked this signal to reduced expression of the nearby <i>PELO</i> gene. These results demonstrate that recessive models, when compared to GWAS using the additive approach, can identify novel loci, including large-effect variants with pathophysiological consequences relevant to type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document