scholarly journals Controlling the breakup of toroidal liquid films on solid surfaces

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew M. J. Edwards ◽  
Élfego Ruiz-Gutiérrez ◽  
Michael I. Newton ◽  
Glen McHale ◽  
Gary G. Wells ◽  
...  

AbstractThe breakup of a slender filament of liquid driven by surface tension is a classical fluid dynamics stability problem that is important in many situations where fine droplets are required. When the filament is resting on a flat solid surface which imposes wetting conditions the subtle interplay with the fluid dynamics makes the instability pathways and mode selection difficult to predict. Here, we show how controlling the static and dynamic wetting of a surface can lead to repeatable switching between a toroidal film of an electrically insulating liquid and patterns of droplets of well-defined dimensions confined to a ring geometry. Mode selection between instability pathways to these different final states is achieved by dielectrophoresis forces selectively polarising the dipoles at the solid-liquid interface and so changing both the mobility of the contact line and the partial wetting of the topologically distinct liquid domains. Our results provide insights into the wetting and stability of shaped liquid filaments in simple and complex geometries relevant to applications ranging from printing to digital microfluidic devices.

2018 ◽  
Vol 54 (73) ◽  
pp. 10264-10267 ◽  
Author(s):  
Bart Stel ◽  
Fernando Cometto ◽  
Behzad Rad ◽  
James J. De Yoreo ◽  
Magalí Lingenfelder

Kinetic pathway in S-layer self-assembly at the solid–liquid interface across time (second to hours) and spatial scales (nm to microns).


Author(s):  
Silvia Ardizzone ◽  
Daniela Meroni

The wettability of solid surfaces is the result of the balance between adhesive and cohesive forces. When adhesive forces at the solid/liquid interface prevail over the cohesive forces in the liquid, the drops will spread over the solid leading to a good wetting as in the case of water over an hydrophilic surface. When instead the adhesive forces are weak, the liquid will not wet the surface remaining in droplets, as water on a polymer. Natural materials exhibit tailored wetting behavior: for instance, certain leaves and insects present superhydrophobic properties. By mimicking what nature creates in an exemplary way, the wetting properties of systems can be tailored experimentally to obtain materials with great applicative impact. The possible applications of such phenomena are very numerous and span from biomaterials to antistain materials, from antifog surfaces to systems for the protection of cultural heritage.


2015 ◽  
Vol 17 (27) ◽  
pp. 17661-17669 ◽  
Author(s):  
Filippo Federici Canova ◽  
Masashi Mizukami ◽  
Takako Imamura ◽  
Kazue Kurihara ◽  
Alexander L. Shluger

Using molecular dynamics simulations, we studied the structure of [BMIM][NTF2] and [BMIM][BF4] liquid films on hydroxylated silica surfaces. The results pointed out that the main features of the solid–liquid interface were present on both crystalline and amorphous silica, and how these determine their electrostatic properties.


2014 ◽  
Vol 790-791 ◽  
pp. 127-132
Author(s):  
Markus Rettenmayr ◽  
Oleg Kashin ◽  
Stephanie Lippmann

Melting of a single-phase polycrystalline material is known to start by the formation of liquid films at the surface and at grain boundaries. The internal liquid films are not necessarily quiescent, but can migrate to avoid/reduce supersaturation in the solid phase. The migration is discussed in the literature to be governed by coherency strains of the solid/liquid interface, by concentration gradients in the liquid or by concentration gradients in the solid phase. A phase transformation model for diffusional phase transformations considering interface thermodynamics (possible deviations from local deviations) has been put up to describe the migration of the solid/liquid (trailing) and the liquid/solid (leading) interfaces of the liquid film. New experimental results on melting in a temperature gradient in combination with simulation calculations reveal that concentration fluctuations in the liquid phase trigger the liquid film migration and determine the migration direction, until after a short time in the order of microseconds the process is governed by diffusion in the solid phase.


Author(s):  
J.A. Panitz

The first few atomic layers of a solid can form a barrier between its interior and an often hostile environment. Although adsorption at the vacuum-solid interface has been studied in great detail, little is known about adsorption at the liquid-solid interface. Adsorption at a liquid-solid interface is of intrinsic interest, and is of technological importance because it provides a way to coat a surface with monolayer or multilayer structures. A pinhole free monolayer (with a reasonable dielectric constant) could lead to the development of nanoscale capacitors with unique characteristics and lithographic resists that surpass the resolution of their conventional counterparts. Chemically selective adsorption is of particular interest because it can be used to passivate a surface from external modification or change the wear and the lubrication properties of a surface to reflect new and useful properties. Immunochemical adsorption could be used to fabricate novel molecular electronic devices or to construct small, “smart”, unobtrusive sensors with the potential to detect a wide variety of preselected species at the molecular level. These might include a particular carcinogen in the environment, a specific type of explosive, a chemical agent, a virus, or even a tumor in the human body.


1999 ◽  
Vol 39 (7) ◽  
pp. 91-98 ◽  
Author(s):  
Ryan N. Jordan ◽  
Eric P. Nichols ◽  
Alfred B. Cunningham

Bioavailability is herein defined as the accessibility of a substrate by a microorganism. Further, bioavailability is governed by (1) the substrate concentration that the cell membrane “sees,” (i.e., the “directly bioavailable” pool) as well as (2) the rate of mass transfer from potentially bioavailable (e.g., nonaqueous) phases to the directly bioavailable (e.g., aqueous) phase. Mechanisms by which sorbed (bio)surfactants influence these two processes are discussed. We propose the hypothesis that the sorption of (bio)surfactants at the solid-liquid interface is partially responsible for the increased bioavailability of surface-bound nutrients, and offer this as a basis for suggesting the development of engineered in-situ bioremediation technologies that take advantage of low (bio)surfactant concentrations. In addition, other industrial systems where bioavailability phenomena should be considered are addressed.


Sign in / Sign up

Export Citation Format

Share Document