scholarly journals Long-term depression at hippocampal mossy fiber-CA3 synapses involves BDNF but is not mediated by p75NTR signaling

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Machhindra Garad ◽  
Elke Edelmann ◽  
Volkmar Leßmann

AbstractBDNF plays a crucial role in the regulation of synaptic plasticity. It is synthesized as a precursor (proBDNF) that can be proteolytically cleaved to mature BDNF (mBDNF). Previous studies revealed a bidirectional mode of BDNF actions, where long-term potentiation (LTP) was mediated by mBDNF through tropomyosin related kinase (Trk) B receptors whereas long-term depression (LTD) depended on proBDNF/p75 neurotrophin receptor (p75NTR) signaling. While most experimental evidence for this BDNF dependence of synaptic plasticity in the hippocampus was derived from Schaffer collateral (SC)-CA1 synapses, much less is known about the mechanisms of synaptic plasticity, in particular LTD, at hippocampal mossy fiber (MF) synapses onto CA3 neurons. Since proBDNF and mBDNF are expressed most abundantly at MF-CA3 synapses in the rodent brain and we had shown previously that MF-LTP depends on mBDNF/TrkB signaling, we now explored the role of proBDNF/p75NTR signaling in MF-LTD. Our results show that neither acute nor chronic inhibition of p75NTR signaling impairs MF-LTD, while short-term plasticity, in particular paired-pulse facilitation, at MF-CA3 synapses is affected by a lack of functional p75NTR signaling. Furthermore, MF-CA3 synapses showed normal LTD upon acute inhibition of TrkB receptor signaling. Nonetheless, acute inhibition of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of both intracellular and extracellular proBDNF cleavage, impaired MF-LTD. This seems to indicate that LTD at MF-CA3 synapses involves BDNF, however, MF-LTD does not depend on p75NTRs. Altogether, our experiments demonstrate that p75NTR signaling is not warranted for all glutamatergic synapses but rather needs to be checked separately for every synaptic connection.

2020 ◽  
Vol 26 ◽  
Author(s):  
Jun-Jie Tang ◽  
Shuang Feng ◽  
Xing-Dong Chen ◽  
Hua Huang ◽  
Min Mao ◽  
...  

: Neurological diseases bring great mental and physical torture to the patients, and have long-term and sustained negative effects on families and society. The attention to neurological diseases is increasing, and the improvement of the material level is accompanied by an increase in the demand for mental level. The p75 neurotrophin receptor (p75NTR) is a low-affinity neurotrophin receptor and involved in diverse and pleiotropic effects in the developmental and adult central nervous system (CNS). Since neurological diseases are usually accompanied by the regression of memory, the pathogenesis of p75NTR also activates and inhibits other signaling pathways, which has a serious impact on the learning and memory of patients. The results of studies shown that p75NTR is associated with LTP/LTD-induced synaptic enhancement and inhibition, suggest that p75NTR may be involved in the progression of synaptic plasticity. And its pro-apoptotic effect is associated with activation of proBDNF and inhibition of proNGF, and TrkA/p75NTR imbalance leads to pro-survival or pro-apoptotic phenomena. It can be inferred that p75NTR mediates apoptosis in the hippocampus and amygdale, which may affect learning and memory behavior. This article mainly discusses the relationship between p75NTR and learning memory and associated mechanisms, which may provide some new ideas for the treatment of neurological diseases.


2020 ◽  
Author(s):  
Mason L. Yeh ◽  
Jessica R Yasko ◽  
Eric S. Levine ◽  
Betty A. Eipper ◽  
Richard Mains

Abstract Background: Kalirin-7 (Kal7) is a multidomain scaffold and guanine nucleotide exchange factor localized to the postsynaptic density, where Kal7 is crucial for synaptic plasticity. Kal7 knockout mice exhibit marked suppression of long-term potentiation and long-term depression in hippocampus, cerebral cortex and spinal cord, with depressed surface expression of GluN2B receptor subunits and dramatically blunted perception of pain. Kal7 knockout animals show exaggerated locomotor responses to psychostimulants and self-administer cocaine more enthusiastically than wildtype mice. Results: To address the underlying cellular and molecular mechanisms which are deranged by loss of Kal7, we infused candidate intracellular interfering peptides to acutely challenge the synaptic function(s) of Kal7 with potential protein binding partners, to determine if plasticity deficits in Kal7-/- mice are the product of developmental processes since conception, or could be produced on a much shorter time scale. We demonstrated that these small intracellular peptides disrupted normal long-term potentiation and long-term depression, strongly suggesting that maintenance of established interactions of Kal7 with PSD-95 and/or GluN2B is crucial to synaptic plasticity. Conclusions: Blockade of the Kal7-GluN2B interaction was most effective at blocking long-term potentiation, but had no effect on long-term depression. Biochemical approaches indicated that Kal7 interacted with PSD-95 at multiple sites within Kal7.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yihui Cui ◽  
Ilya Prokin ◽  
Hao Xu ◽  
Bruno Delord ◽  
Stephane Genet ◽  
...  

Synaptic plasticity is a cardinal cellular mechanism for learning and memory. The endocannabinoid (eCB) system has emerged as a pivotal pathway for synaptic plasticity because of its widely characterized ability to depress synaptic transmission on short- and long-term scales. Recent reports indicate that eCBs also mediate potentiation of the synapse. However, it is not known how eCB signaling may support bidirectionality. Here, we combined electrophysiology experiments with mathematical modeling to question the mechanisms of eCB bidirectionality in spike-timing dependent plasticity (STDP) at corticostriatal synapses. We demonstrate that STDP outcome is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Moreover, we show that eCB-tLTD requires active calcineurin whereas eCB-tLTP necessitates the activity of presynaptic PKA. Therefore, just like glutamate or GABA, eCB form a bidirectional system to encode learning and memory.


Author(s):  
Arianna Maffei

Synaptic connections in the brain can change their strength in response to patterned activity. This ability of synapses is defined as synaptic plasticity. Long lasting forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD), are thought to mediate the storage of information about stimuli or features of stimuli in a neural circuit. Since its discovery in the early 1970s, synaptic plasticity became a central subject of neuroscience, and many studies centered on understanding its mechanisms, as well as its functional implications.


2019 ◽  
Vol 3 ◽  
pp. 239821281984821 ◽  
Author(s):  
TVP Bliss ◽  
GL Collingridge

In this article, we describe our involvement in the early days of research into long-term potentiation. We start with a description of the early experiments conducted in Oslo and London where long-term potentiation was first characterised. We discuss the ways in which the molecular pharmacology of glutamate receptors control the induction and expression of long-term potentiation and its counterpart, long-term depression. We then go on to summarise the extraordinary advances in understanding the cellular mechanisms of synaptic plasticity that have taken place in the subsequent half century. Finally, the increasing evidence that impaired long-term potentiation is a core feature of many brain disorders (LToPathies) is addressed by way of a few selected examples.


Hippocampus ◽  
2009 ◽  
pp. NA-NA ◽  
Author(s):  
Graham L. Barrett ◽  
Christopher A. Reid ◽  
Christina Tsafoulis ◽  
Wenmei Zhu ◽  
David A. Williams ◽  
...  

1986 ◽  
Vol 55 (4) ◽  
pp. 767-775 ◽  
Author(s):  
W. H. Griffith ◽  
T. H. Brown ◽  
D. Johnston

The excitatory synaptic response evoked by stimulating the mossy fiber synaptic input to hippocampal CA3 neurons in normally accompanied by concomitant feedforward or recurrent inhibition. The purpose of the present study was to determine whether a decrease in the inhibitory conductance of this mixed synaptic response contributes to the enhanced synaptic efficacy observed during long-term potentiation (LTP). Intracellular recordings were made from CA3 neurons of rat hippocampal brain slices. Current- and voltage-clamp measurements of the mixed excitatory/inhibitory evoked synaptic response were made, using a single-electrode clamp system. Outward and inward rectification were reduced, respectively, by intracellular injection and bath application of Cs+. Biophysical analysis of the evoked synaptic conductance sequence was performed before and 15 min to 1 h after inducing LTP. As expected, measurements made in the early part of the conductance sequence, which represents primarily the monosynaptic excitatory input, demonstrated an increase in the slope conductance during LTP. Measurements made later in the conductance sequence, when the excitatory component appeared to have declined to a negligible value, revealed no decrease in the slope conductance of the inhibitory component of the mixed response. We conclude that a decrease in the conductance associated with the inhibitory component of the mixed synaptic response plays little or no role in the increase in synaptic efficacy observed during LTP of this synaptic system.


1995 ◽  
Vol 73 (9) ◽  
pp. 1312-1322 ◽  
Author(s):  
T. Kamishita ◽  
H. Haruta ◽  
N. Torii ◽  
T. Tsumoto ◽  
T. P. Hicks

Two forms of use-dependent synaptic plasticity, called long-term potentiation (LTP) and long-term depression (LTD), can be elicited in the visual cortex following different paradigms of electrophysiological stimulation. These neurobiological phenomena often are considered as necessary components of models for the alteration in function of the nervous system that must occur at some level for the establishment and (or) maintenance of memory engrams, for learning processes, or for the consolidation of active neural connections and regression of inactive contacts in the developing brain. It has been postulated that for LTP and LTD to be produced in the hippocampus, activation of a particular subtype of excitatory amino acid receptor, the metabotropic receptor, is a critical requirement. Only recently has it become possible to test this hypothesis directly, as a new compound, (±)-α-methyl-4-carboxyphenylglycine (MCPG), has been introduced and the suggestion made that it selectively antagonizes the metabotropic receptor. This substance has been tested in the present study on responses recorded from slices of rat visual cortex and has been found both to block the activation of the metabotropic receptor and to interfere selectively with the form of synaptic plasticity called LTD. It thus appears from the experiments reported in this paper as though the metabotropic receptor subtype that is blocked by MCPG is required for the expression of LTD but not for the expression of LTP, in the visual cortex of adult rats.Key words: excitatory amino acids, long-term potentiation, long-term depression, visual cortex, (±)-α-methyl-4-carboxyphenylglycine (MCPG).


2015 ◽  
Vol 37 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Giulia Zanni ◽  
Kai Zhou ◽  
Ilse Riebe ◽  
Cuicui Xie ◽  
Changlian Zhu ◽  
...  

Radiotherapy is common in the treatment of brain tumors in children but often causes deleterious, late-appearing sequelae, including cognitive decline. This is thought to be caused, at least partly, by the suppression of hippocampal neurogenesis. However, the changes in neuronal network properties in the dentate gyrus (DG) following the irradiation of the young, growing brain are still poorly understood. We characterized the long-lasting effects of irradiation on the electrophysiological properties of the DG after a single dose of 6-Gy whole-brain irradiation on postnatal day 11 in male Wistar rats. The assessment of the basal excitatory transmission in the medial perforant pathway (MPP) by an examination of the field excitatory postsynaptic potential/volley ratio showed an increase of the synaptic efficacy per axon in irradiated animals compared to sham controls. The paired-pulse ratio at the MPP granule cell synapses was not affected by irradiation, suggesting that the release probability of neurotransmitters was not altered. Surprisingly, the induction of long-term synaptic plasticity in the DG by applying 4 trains of high-frequency stimulation provoked a shift from long-term potentiation (LTP) to long-term depression (LTD) in irradiated animals compared to sham controls. The morphological changes consisted in a virtually complete ablation of neurogenesis following irradiation, as judged by doublecortin immunostaining, while the inhibitory network of parvalbumin interneurons was intact. These data suggest that the irradiation of the juvenile brain caused permanent changes in synaptic plasticity that would seem consistent with an impairment of declarative learning. Unlike in our previous study in mice, lithium treatment did unfortunately not ameliorate any of the studied parameters. For the first time, we show that the effects of cranial irradiation on long-term synaptic plasticity is different in the juvenile compared with the adult brain, such that while irradiation of the adult brain will only cause a reduction in LTP, irradiation of the juvenile brain goes further and causes LTD. Although the mechanisms underlying the synaptic alterations need to be elucidated, these findings provide a better understanding of the effects of irradiation in the developing brain and the cognitive deficits observed in young patients who have been subjected to cranial radiotherapy.


Sign in / Sign up

Export Citation Format

Share Document