scholarly journals Hypertonic stress modulates eNOS function through O-GlcNAc modification at Thr-866

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chang Li ◽  
An He ◽  
Yongzheng Guo ◽  
Xiyang Yang ◽  
Minghao Luo ◽  
...  

AbstractO-GlcNAcylation, an energy-sensitive posttranslational modification, can regulate the activity of endothelial nitric oxide synthase (eNOS). Previous studies found that Thr866 is the key site for low-glucose-mediated regulation of eNOS O-GlcNAc. However, it is not known whether this activity functions through the Thr866 site concomitant with other physical and chemical factors. Therefore, we first explored the effects of physical and chemical factors on eNOS O-GlcNAc and its Thr866 site. In this study, hypertonic stress, hyperthermia and hydrogen peroxide all increased the expression levels of eNOS O-GlcNAc, whereas hypoxia and high levels of alcohol had no effect. on the expression levels of eNOS O-GlcNAc; by contrast, low pH led to a decrease in eNOS O-GlcNAc levels. Notably, eNOS O-GlcNAc protein levels were unchanged after Thr866 site mutation only under hypertonic conditions, suggesting that hypertonic stress may act through the Thr866 site. Upon exploring the mechanism of hypertonic stress on eNOS O-GlcNAc activity and function, we found that hypertonic stress can upregulate the expression of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT), which is dependent on AMPK. When AMPK was knocked out, the upregulation of OGT expression and increased O-GlcNAc modifications induced by hypertonic stress were reversed.

2016 ◽  
Vol 311 (6) ◽  
pp. F1172-F1181 ◽  
Author(s):  
Renata Gellai ◽  
Judit Hodrea ◽  
Lilla Lenart ◽  
Adam Hosszu ◽  
Sandor Koszegi ◽  
...  

Increased O-linked β- N-acetylglucosamine glycosylation ( O-GlcNAcylation) is a known contributor to diabetes; however, its relevance in diabetic nephropathy (DN) is poorly elucidated. Here, we studied the process and enzymes of O-GlcNAcylation with a special emphasis on Akt-endothelial nitric oxide synthase (eNOS) and heat shock protein (HSP)72 signaling. Since tubular injury is the prominent site of DN, the effect of hyperglycemia was first measured in proximal tubular (HK2) cells cultured in high glucose. In vivo O-GlcNAcylation and protein levels of O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), phosphorylated (p)Akt/Akt, peNOS/eNOS, and HSP72 were assessed in the kidney cortex of streptozotocin-induced diabetic rats. The effects of various renin-angiotensin-aldosterone system (RAAS) inhibitors were also evaluated. In proximal tubular cells, hyperglycemia-induced OGT expression led to increased O-GlcNAcylation, which was followed by a compensatory increase of OGA. In parallel, peNOS and pAkt levels decreased, whereas HSP72 increased. In diabetic rats, elevated O-GlcNAcylation was accompanied by decreased OGT and OGA. RAAS inhibitors ameliorated diabetes-induced kidney damage and prevented the elevation of O-GlcNAcylation and the decrement of pAkt, peNOS, and HSP72. In conclusion, hyperglycemia-induced elevation of O-GlcNAcylation contributes to the progression of DN via inhibition of Akt/eNOS phosphorylation and HSP72 induction. RAAS blockers successfully inhibit this process, suggesting a novel pathomechanism of their renoprotective action in the treatment of DN.


1997 ◽  
Vol 80 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Alex F.Y. Chen ◽  
Timothy O’Brien ◽  
Masato Tsutsui ◽  
Hiroyuki Kinoshita ◽  
Vincent J. Pompili ◽  
...  

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Vinicius P Garcia ◽  
Jamie G Hijmans ◽  
Kelly A Stockelman ◽  
Madden Brewster ◽  
Hannah Fandl ◽  
...  

Introduction: Endothelial nitric oxide synthase (eNOS) activity is critical to vascular health. Impaired eNOS activity and diminished NO production are common characteristics of a proatherogenic, dysfunctional endothelial phenotype that is associated with cardiovascular risk factors and disease. Extracellular microvesicles, particularly endothelial cell derived microvesicles (EMVs) represent novel mechanistic mediators of endothelial dysfunction and vascular disease. It is unknown whether eNOS suppression affects EMV number and function. We tested the following hypotheses: 1) eNOS blockade increases EMV release; and 2) EMVs derived from eNOS-suppressed cells adversely affect endothelial cell inflammation, apoptosis and NO production. Methods: Human umbilical vein endothelial cells (HUVECs) were treated with the eNOS inhibitor, L-N G -Nitroarginine methyl ester (L-NAME; 300mM) for 24 h. EMVs (CD144 + ) released into the supernatant from cells treated with L-NAME or vehicle were isolated and quantified by flow cytometry. Fresh HUVECs were then treated with either L-NAME-derived or control EMVs for 24 h. To evaluate the role of endocytosis on the endothelial effects of EMVs, HUVECs were pre-incubated (12 h) with EIPA, filipin and chlorpromazine for 2 h, and all experiments repeated. Results: EMV release was markedly higher (~100%; P<0.05) in cells treated with L-NAME compared with control (81±6 vs. 40±7 EMV/μL). L-NAME-generated EMVs induced significantly higher release of IL-6 (38.4±5.1 vs. 21.0±1.9 pg/mL) and IL-8 (38.9±3.5 vs. 27.2±3.1 pg/mL) as well as greater active NF-κB p65 (Ser-536) (9.7±0.7 vs. 6.1±0.6 AU) expression than control EMVs. The expression of activated-caspase-3 was significantly higher in the cells treated with L-NAME (9.5±1.1 vs. 6.4±0.4 AU). Total eNOS (97.1±8.2 vs. 157.5±15.6 AU), activated eNOS (4.9±1.2 vs. 9.1±1.3 AU) and NO production (5.0±0.8 vs. 7.0±0.6 μmol/L) were significantly lower in endothelial cells treated with EMVs from eNOS suppressed cells. Endocytosis blockers mitigated the deleterious endothelial effects of EMVs. Conclusion: eNOS-suppression increases EMV release. Moreover, EMVs from eNOS-suppressed cells increase endothelial cell inflammation and apoptosis and decrease NO production.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Salah A. Mohamed ◽  
Arlo Radtke ◽  
Roza Saraei ◽  
Joern Bullerdiek ◽  
Hajar Sorani ◽  
...  

Aims. Dysregulated expression of the endothelial nitric oxide synthase (eNOS) is observed in aortic aneurysms associated with bicuspid aortic valve (BAV). We determined eNOS protein levels in various areas in ascending aortic aneurysms.Methods and Results. Aneurysmal specimens were collected from 19 patients, 14 with BAV and 5 with tricuspid aortic valve (TAV). ENOS protein levels were measured in the outer curve (convexity), the opposite side (concavity), the distal and above the sinotubular junction (proximal) aneurysm. Cultured aortic cells were treated with NO synthesis inhibitor L-NAME and the amounts of 35 apoptosis-related proteins were determined. In patients with BAV, eNOS levels were significantly lower in the proximal aorta than in the concavity and distal aorta. ENOS protein levels were also lower in the convexity than in the concavity. While the convexity and distal aorta showed similar eNOS protein levels in BAV and TAV patients, levels were higher in TAV proximal aorta. Inhibition of NO synthesis in aneurysmal aortic cells by L-NAME led to a cytosolic increase in the levels of mitochondrial serine protease HTRA2/Omi.Conclusion. ENOS protein levels were varied at different areas of the aneurysmal aorta. The dysregulation of nitric oxide can lead to an increase in proapoptotic HTRA2/Omi.


2011 ◽  
Vol 301 (2) ◽  
pp. H571-H583 ◽  
Author(s):  
Kumiko Taguchi ◽  
Tsuneo Kobayashi ◽  
Takayuki Matsumoto ◽  
Katsuo Kamata

In diabetic states, hyperinsulinemia may negatively regulate Akt/endothelial nitric oxide synthase (eNOS) activation. Our main aim was to investigate whether and how insulin might negatively regulate Akt/eNOS activities via G protein-coupled receptor kinase 2 (GRK2) in aortas from ob/ob mice. Endothelium-dependent relaxation was measured in aortic rings from ob/ob mice (a type 2 diabetes model). GRK2, β-arrestin2, and Akt/eNOS signaling-pathway protein levels and activities were mainly assayed by Western blotting. Plasma insulin was significantly elevated in ob/ob mice. Insulin-induced relaxation was significantly decreased in the ob/ob aortas [vs. age-matched control (lean) ones]. The response in ob/ob aortas was enhanced by PKC inhibitor or GRK2 inhibitor. Akt (at Thr308) phosphorylation and eNOS (at Ser1177) phosphorylation, and also the β-arrestin2 protein level, were markedly decreased in the membrane fraction of insulin-stimulated ob/ob aortas (vs. insulin-stimulated lean ones). These membrane-fraction expressions were enhanced by GRK2 inhibitor and by PKC inhibitor in the ob/ob group but not in the lean group. PKC activity was much greater in ob/ob than in lean aortas. GRK2 protein and activity levels were increased in ob/ob and were greatly reduced by GRK2 inhibitor or PKC inhibitor pretreatment. These results suggest that in the aorta in diabetic mice with hyperinsulinemia an upregulation of GRK2 and a decrease in β-arrestin2 inhibit insulin-induced stimulation of the Akt/eNOS pathway and that GRK2 overactivation may result from an increase in PKC activity.


2007 ◽  
Vol 292 (3) ◽  
pp. H1373-H1389 ◽  
Author(s):  
Somshuvra Mukhopadhyay ◽  
Fang Xu ◽  
Pravin B. Sehgal

We previously reported the disruption of caveolae/rafts, dysfunction of Golgi tethers, N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptor proteins (SNAREs), and SNAPs, and inhibition of anterograde trafficking in endothelial cells in culture and rat lung exposed to monocrotaline pyrrole (MCTP) as a prelude to the development of pulmonary hypertension. We have now investigated 1) whether this trafficking block affects subcellular localization and function of endothelial nitric oxide (NO) synthase (eNOS) and 2) whether Golgi blockade and eNOS sequestration are observed after hypoxia and senescence. Immunofluorescence data revealed that MCTP-induced “megalocytosis” of pulmonary arterial endothelial cells (PAEC) was accompanied by a loss of eNOS from the plasma membrane, with increased accumulation in the cytoplasm. This cytoplasmic eNOS was sequestered in heterogeneous compartments and partially colocalized with Golgi and endoplasmic reticulum (ER) markers, caveolin-1, NOSTRIN, and ER Tracker, but not Lyso Tracker. Hypoxia and senescence also produced enlarged PAEC, with dysfunctional Golgi and loss of eNOS from the plasma membrane, with sequestration in the cytoplasm. Live-cell imaging of caveolar and cytoplasmic NO with 4,5-diaminofluorescein diacetate (DAF-2DA) as probe showed a marked loss of caveolar NO after MCTP, hypoxia, and senescence. Although ionomycin stimulated DAF-2DA fluorescence in control PAEC, this ionophore decreased DAF-2DA fluorescence in MCTP-treated and senescent PAEC, suggesting localization of eNOS in an aberrant cytoplasmic compartment that was readily discharged by Ca2+-induced exocytosis. Thus monocrotaline, hypoxia, and senescence produce a Golgi blockade in PAEC, leading to sequestration of eNOS away from its functional caveolar location and providing a mechanism for the often-reported reduction in pulmonary arterial NO levels in experimental pulmonary hypertension, despite sustained eNOS protein levels.


2010 ◽  
Vol 298 (6) ◽  
pp. H1857-H1869 ◽  
Author(s):  
Minglong Zhou ◽  
R. Jay Widmer ◽  
Wei Xie ◽  
A. Jimmy Widmer ◽  
Matthew W. Miller ◽  
...  

Exercise training enhances agonist-mediated relaxation in both control and collateral-dependent coronary arteries of hearts subjected to chronic occlusion, an enhancement that is mediated in part by nitric oxide. The purpose of the present study was to elucidate exercise training-induced adaptations in specific cellular mechanisms involved in the regulation of endothelial nitric oxide synthase (eNOS) in coronary arteries of ischemic hearts. Ameroid constrictors were surgically placed around the proximal left circumflex coronary artery (LCX) of adult female Yucatan miniature swine. Eight weeks postoperatively, animals were randomized into sedentary (pen-confined) or exercise training (treadmill run; 5 days/wk; 14 wk) protocols. Coronary artery segments (∼1.0 mm luminal diameter) were isolated from collateral-dependent (LCX) and control (nonoccluded left anterior descending) arteries 22 wk after ameroid placement. Endothelial cells were enzymatically dissociated, and intracellular Ca2+ responses (fura 2) to bradykinin stimulation were studied. Immunofluorescence and laser scanning confocal microscopy were used to quantify endothelial cell eNOS and caveolin-1 cellular distribution under basal and bradykinin-stimulated conditions. Immunoblot analysis was used to determine eNOS, phosphorylated (p)-eNOS, protein kinase B (Akt), pAkt, and caveolin-1 protein levels. Bradykinin-stimulated nitrite plus nitrate (NOx; nitric oxide metabolites) levels were assessed via HPLC. Exercise training resulted in significantly enhanced bradykinin-mediated increases in endothelial Ca2+ levels, NOx levels, and the distribution of eNOS-to-caveolin-1 ratio at the plasma membrane in endothelial cells of control and collateral-dependent arteries. Exercise training also significantly increased total eNOS and phosphorylated levels of eNOS (pSer1179) in collateral-dependent arteries. Total eNOS protein levels were also significantly increased in collateral-dependent arteries of sedentary animals. These data provide new insights into exercise training-induced adaptations in cellular mechanisms of nitric oxide regulation in collateral-dependent coronary arteries of chronically occluded hearts that contribute to enhanced nitric oxide production.


Sign in / Sign up

Export Citation Format

Share Document