scholarly journals Fensomea setacea, gen. & sp. nov. (Cladopyxidaceae, Dinophyceae), is neither gonyaulacoid nor peridinioid as inferred from morphological and molecular data

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marc Gottschling ◽  
Maria Consuelo Carbonell-Moore ◽  
Kenneth Neil Mertens ◽  
Monika Kirsch ◽  
Malte Elbrächter ◽  
...  

AbstractDinophyte evolution is essentially inferred from the pattern of thecal plates, and two different labelling systems are used for the important subgroups Gonyaulacales and Peridiniales. The partiform hypotheca of cladopyxidoid dinophytes fits into the morphological concepts of neither group, although they are assigned to the Gonyaulacales. Here, we describe the thecate dinophyte Fensomea setacea, gen. & sp. nov., which has a cladopyxidoid tabulation. The cells displayed a Kofoidean plate formula APC, 3′, 4a, 7″, 7C, 6S, 6′′′, 2′′′′, and slender processes were randomly distributed over the echinate or baculate surface. In addition, we obtained rRNA sequences of F. setacea, gen. & sp. nov., but dinophytes that exhibit a partiform hypotheca did not show a close relationship to Gonyaulacales. Character evolution of thecate dinophytes may have progressed from the ancestral state of six postcingular plates, and two more or less symmetrically arranged antapical plates, towards patterns of only five postcingular plates (Peridiniales) or more asymmetrical configurations (Gonyaulacales). Based on our phylogenetic reconsiderations the contact between the posterior sulcal plate and the first postcingular plate, as well as the contact between an antapical plate and the distalmost postcingular plate, do not represent a rare, specialized gonyaulacoid plate configuration (i.e., the partiform hypotheca of cladopyxidoid dinophytes). Instead, these contacts correspond to the common and regular configuration of peridinioid (and other) dinophytes.

2019 ◽  
Vol 49 (3) ◽  
pp. 197-207
Author(s):  
Rodrigo Antunes CAIRES ◽  
Wagner. C. R. dos SANTOS ◽  
Leonardo MACHADO ◽  
Claudio OLIVEIRA ◽  
Najila N. C. D. CERQUEIRA ◽  
...  

ABSTRACT Despite its importance in biogeographical, ecological, and commercial terms, the fish fauna of the northern Brazilian coast is still poorly known, representing the least sampled portion of the Brazilian Exclusive Economic Zone. We collected Tonkin weakfish, Cynoscion similis specimens during extensive surveys of the northern Brazilian coast and concluded that C. similis is common in this region. While the species had not previously been reported for the northern Brazilian state of Pará, it may have been recorded in studies of industrial fisheries, being identified only as Cynoscion sp. or by the common name pescada negra. This reinforces the need for the reliable taxonomical identification of species, to guarantee the collection of accurate data on ecology and fisheries, and ultimately, support the development of effective conservation strategies. Here we provide additional morphological and molecular data to distinguish Cynoscion similis from the closely related Cynoscion jamaicensis, and other congeners.


2006 ◽  
Vol 51 (4) ◽  
Author(s):  
Stephen Curran ◽  
Vasyl Tkach ◽  
Robin Overstreet

AbstractThe type material of Polylekithum ictaluri, P. halli, and Maculifer chandleri was examined from the United States National Parasite Museum, and we determined that the material was conspecific, making P. halli and M. chandleri junior subjective synonyms of P. ictaluri. Polylekithum catahoulensis sp. nov. was described from material collected from catfishes at the Catahoula Wildlife Refuge, LaSalle Parish, Louisiana, USA, and compared with P. ictaluri collected from catfishes in Reelfoot Lake, Obion County, Tennessee, USA, and the Pearl River, Hancock County, Mississippi, USA. Polylekithum catahoulensis had smaller eggs (77–88 μm long by 51–63 μm wide vs. 94–108 μm by 52–76 μm) and a longer forebody (35–41% of overall body length vs. 29–34%). Comparison of more than 2,400 bp long fragments of nuclear ribosomal DNA (complete ITS and partial 28S regions) strongly supported the status of P. catahoulensis as a new species. Molecular phylogenetic analysis of 28S rDNA gene sequences from Polylekithum as well as representative species from Allocreadiidae, Atractotrematidae, Brachycoeliidae, Callodistomidae, Dicrocoeliidae, Encyclometridae, Gorgoderidae, Haploporidae, Opecoelidae, Plagiorchiidae, and Telorchiidae rooted by Monorchiidae and Lissorchiidae demonstrated that of the families tested, Polylekithum was most closely related to Encyclometridae as a gorgoderoid and not to Allocreadiidae as previously reported. Morphological features of three South American allocreadiids, Allocreadium patagonicum, P. percai, and A. pichi were inconsistent with generic diagnoses of Allocreadium and Polylekithum, so we suggested they belonged in a single unnamed genus similar to Creptotrema. Polylekithum catlai from India was assessed from the description and failed to conform to the generic diagnosis of Polylekithum. Morphology of Caudouterina suggested a close relationship with Polylekithum and not Allocreadiidae.


2001 ◽  
Vol 79 (9) ◽  
pp. 1099-1106 ◽  
Author(s):  
Patrik Inderbitzin ◽  
Mary L Berbee

In this paper, we describe the new genus and species Lollipopaia minuta from a tropical rain forest in Thailand. The ascomata were long beaked and seated on a pseudoparenchymatous stroma that was erumpent through the bark of a decaying branch. Mature ascomata were readily formed under laboratory conditions. Lollipopaia minuta had ascomatal walls forming a textura intricata in surface view and deliquescent paraphyses. The asci floated freely at maturity and had a nonstaining apical ring. These characters are found in the Diaporthales. However, the habit of the stroma combined with the filiform ascospores distinguished L. minuta from all known genera of the Diaporthales. Thus, a close relationship to taxa outside the Diaporthales was considered. Lollipopaia minuta was similar to Ophioceras or Pseudohalonectria in shape of the ascomata, asci, and ascospores. However, phylogenetic analyses based on small subunit ribosomal DNA sequences confirmed the placement of L. minuta within the Diaporthales with 100% bootstrap support. A closest relative within the Diaporthales was not determined.Key words: Magnaporthaceae, microfungi, taxonomy, tropical mycology.


2006 ◽  
Vol 31 (3) ◽  
pp. 525-532 ◽  
Author(s):  
Félix Forest ◽  
John C. Manning

Nylandtia (Polygalaceae) is a small South African genus of two or more species distributed mainly in the Cape region. Previous studies based on anatomical, morphological and molecular data have already revealed a close relationship between Nylandtia and Muraltia, a genus of 117 species that is nearly endemic to South Africa. New evidence from molecular studies of family Polygalaceae and genus Muraltia shows that Nylandtia is derived from genus Muraltia, and is nested in Muraltia subgenus Psiloclada. These results have prompted a morphological re-evaluation of the genera Nylandtia and Muraltia, supporting the conclusion that the two species of Nylandtia currently recognized, N. spinosa and N. scoparia, should be included in subgenus Psiloclada within the genus Muraltia. Only one nomenclatural change is necessary: Muraltia spinosa (L.) F. Forest & J. C. Manning, comb. nov.


Zootaxa ◽  
2018 ◽  
Vol 4434 (1) ◽  
pp. 141 ◽  
Author(s):  
ACHYUTHAN N. SRIKANTHAN ◽  
PRIYANKA SWAMY ◽  
ASHWINI V. MOHAN ◽  
SAUNAK PAL

We describe a new species of rock-dwelling gecko, Hemidactylus paaragowlipaaragowli sp. nov., from the Agastyamalai Hill Range, in the southern Western Ghats. Morphological and molecular data support the distinctiveness of the species and its close relationship to other large-bodied, tuberculate Hemidactylus spp. from the H. prashadi group from India and Sri Lanka. This species belongs to a rupicolous complex and can be distinguished from other members of the group based on the following characters: 22–24 longitudinal rows of fairly regularly arranged, subtrihedral, weakly keeled, striated tubercles at midbody; 9–11 and 10–12 subdigital lamellae on the first and fourth digits, respectively, of both manus and pes; tail with transverse series of four enlarged tubercles on each tail segment; 10–12 femoral pores on each side separated by 16–18 scales without pores; 11–13 supralabials and 9–10 infralabials. 


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2038
Author(s):  
Perla Tedesco ◽  
Monica Caffara ◽  
Andrea Gustinelli ◽  
Graziano Fiorito ◽  
Maria Letizia Fioravanti

Cephalopods are intermediate/paratenic hosts in the life cycle of elasmobranch tapeworms, nevertheless most records of infection in this group of mollusks are outdated and fragmentary. The present work aimed to investigate the cestode fauna of the common octopus Octopus vulgaris from the Tyrrhenian Sea (Central Mediterranean). The parasitic stages were characterized by light and Scanning Electron Microscopy (SEM) and sequencing of 28S rDNA. Three cestode taxa were identified to the genus level: the onchoproteocephalidean Acanthobothrium sp. (prevalence 28%), the “tetraphyllidean” Anthobothrium sp. (prevalence 13%) and the trypanorhynch Nybelinia sp. (prevalence 3%). The remarkable prevalence observed for gastrointestinal cestodes highlight a possible important role of O. vulgaris in the transmission of elasmobranch tapeworms, particularly Onchoproteocephalideans. Furthermore, the present work provides, for the first time, detailed morphological (SEM) and molecular support to confirm the occurrence of Anthobothrium sp. in cephalopod hosts. In order to gain higher taxonomic resolution for the identified taxa, we stress the need to collect further morphological and molecular data of adult cestodes infecting their elasmobranch definitive hosts.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3262 ◽  
Author(s):  
Tomasz Skawiński ◽  
Bartosz Borczyk

Background Lepidosaurs, a group including rhynchocephalians and squamates, are one of the major clades of extant vertebrates. Although there has been extensive phylogenetic work on this clade, its interrelationships are a matter of debate. Morphological and molecular data suggest very different relationships within squamates. Despite this, relatively few studies have assessed the utility of other types of data for inferring squamate phylogeny. Methods We used developmental sequences of 20 events in 29 species of lepidosaurs. These sequences were analysed using event-pairing and continuous analysis. They were transformed into cladistic characters and analysed in TNT. Ancestral state reconstructions were performed on two main phylogenetic hypotheses of squamates (morphological and molecular). Results Cladistic analyses conducted using characters generated by these methods do not resemble any previously published phylogeny. Ancestral state reconstructions are equally consistent with both morphological and molecular hypotheses of squamate phylogeny. Only several inferred heterochronic events are common to all methods and phylogenies. Discussion Results of the cladistic analyses, and the fact that reconstructions of heterochronic events show more similarities between certain methods rather than phylogenetic hypotheses, suggest that phylogenetic signal is at best weak in the studied developmental events. Possibly the developmental sequences analysed here evolve too quickly to recover deep divergences within Squamata.


2020 ◽  
Vol 191 (1) ◽  
pp. 276-301 ◽  
Author(s):  
Adam P Cossette

Abstract Morphological and molecular data suggest a close relationship for alligators and caimans. The first fossil appearances combined with phylogenetic hypotheses suggest a divergence of the groups near the Cretaceous–Palaeogene boundary, but the early fossil record of Caimaninae is incomplete, and large gaps exist between the earliest representatives of the group. A new caimanine from lower Palaeocene (Tiffanian) deposits in the Black Peaks Formation of Brewster County, Texas is established upon two specimens of different size that bear similarities to Bottosaurus harlani from the uppermost Cretaceous and lowermost Palaeogene of New Jersey. The larger individual consists of a partial skull and lower jaw in addition to postcranial material. The smaller individual preserves a snout and posterior portions of the skull. Both specimens suggest an animal with a comparatively short, flat, broad snout. Species of Bottosaurus share diagnostic morphological character states but are differentiated in meaningful ways. Phylogenetic analysis shows that the new species is sister to B. harlani, indicates an early radiation of North American caimanines and elucidates a more complicated biogeographical history than previously hypothesized. A growing body of evidence suggests that Caimaninae may be diagnosed by ancestral characters, potentially drawing basal alligatoroids crownwards in phylogenetic trees.


Sign in / Sign up

Export Citation Format

Share Document