scholarly journals Invasive Lactuca serriola seeds contain endophytic bacteria that contribute to drought tolerance

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seorin Jeong ◽  
Tae-Min Kim ◽  
Byungwook Choi ◽  
Yousuk Kim ◽  
Eunsuk Kim

AbstractThe mutualistic relationship between alien plant species and microorganisms is proposed to facilitate or hinder invasive success, depending on whether plants can form novel associations with microorganisms in the introduced habitats. However, this hypothesis has not considered seed endophytes that would move together with plant propagules. Little information is available on the seed endophytic bacteria of invasive species and their effects on plant performance. We isolated the seed endophytic bacteria of a xerophytic invasive plant, Lactuca serriola, and examined their plant growth-promoting traits. In addition, we assessed whether these seed endophytes contributed to plant drought tolerance. Forty-two bacterial species were isolated from seeds, and all of them exhibited at least one plant growth-promoting trait. Kosakonia cowanii occurred in all four tested plant populations and produced a high concentration of exopolysaccharides in media with a highly negative water potential. Notably, applying K. cowanii GG1 to Arabidopsis thaliana stimulated plant growth under drought conditions. It also reduced soil water loss under drought conditions, suggesting bacterial production of exopolysaccharides might contribute to the maintenance of soil water content. These results imply that invasive plants can disperse along with beneficial bacterial symbionts, which potentially improve plant fitness and help to establish alien plant species.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elsayed Mansour ◽  
Hany A. M. Mahgoub ◽  
Samir A. Mahgoub ◽  
El-Sayed E. A. El-Sobky ◽  
Mohamed I. Abdul-Hamid ◽  
...  

AbstractWater deficit has devastating impacts on legume production, particularly with the current abrupt climate changes in arid environments. The application of plant growth-promoting rhizobacteria (PGPR) is an effective approach for producing natural nitrogen and attenuating the detrimental effects of drought stress. This study investigated the influence of inoculation with the PGPR Rhizobium leguminosarum biovar viciae (USDA 2435) and Pseudomonas putida (RA MTCC5279) solely or in combination on the physio-biochemical and agronomic traits of five diverse Vicia faba cultivars under well-watered (100% crop evapotranspiration [ETc]), moderate drought (75% ETc), and severe drought (50% ETc) conditions in newly reclaimed poor-fertility sandy soil. Drought stress substantially reduced the expression of photosynthetic pigments and water relation parameters. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased in plants under drought stress compared with those in well-watered plants. These adverse effects of drought stress reduced crop water productivity (CWP) and seed yield‐related traits. However, the application of PGPR, particularly a consortium of both strains, improved these parameters and increased seed yield and CWP. The evaluated cultivars displayed varied tolerance to drought stress: Giza-843 and Giza-716 had the highest tolerance under well-watered and moderate drought conditions, whereas Giza-843 and Sakha-4 were more tolerant under severe drought conditions. Thus, co-inoculation of drought-tolerant cultivars with R. leguminosarum and P. putida enhanced their tolerance and increased their yield and CWP under water-deficit stress conditions. This study showed for the first time that the combined use of R. leguminosarum and P. putida is a promising and ecofriendly strategy for increasing drought tolerance in legume crops.


3 Biotech ◽  
2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Bibiana Rios-Galicia ◽  
Catalina Villagómez-Garfias ◽  
Esaú De la Vega-Camarillo ◽  
Jairo Eder Guerra-Camacho ◽  
Nora Medina-Jaritz ◽  
...  

Author(s):  
R. Thamizh Vendan ◽  
D. Balachandar

Background: Symbiotic associations between legumes and Rhizobia are ancient and fundamental. However, the plant growth-promoting endophytes other than Rhizobia are not yet fully explored for pulses productivity. The present study was aimed to isolate efficient endophytic bacteria from pulses, assess their diversity, screen their plant growth-promoting activities and to test their potential as bio inoculants for pulses.Methods: We have isolated several endophytic bacteria from pulse crops more specifically from blackgram (Vigna mungo) and greengram (Vigna radiata). After careful screening, 15 promising endophytic isolates were selected for this study. The identification of endophytic bacterial isolates was performed by 16S rRNA gene sequencing. The isolates were tested for their potential for the plant growth-promoting traits such as nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore secretion and antifungal activity. Pot culture experiments were conducted with the screened potential endophytic cultures.Result: The 16S rRNA gene sequencing revealed that species of Enterobacter, Bacillus, Pantoea, Pseudomonas, Acromobacter, Ocrobacterium were found as endophytes in blackgram and greengram. The in vitro screening identified Bacillus pumilus (BG-E6), Pseudomonas fluorescens (BG-E5) and Bacillus licheniformis (BG-E3) from blackgram and Pseudomonas chlororaphis (GG-E2) and Bacillus thuringiensis (GG-E7) from greengram as potential plant growth-promoting endophytes. These strains showed antagonism against plant pathogenic fungi. Upon inoculation of these endophytic PGPR strains, the blackgram and greengram growth and yield got increased. Among the strains, BG-E6 recorded 14.7% increased yield in blackgram and GG-E2 accounted for a 19.5% yield increase in greengram compared to respective uninoculated control. The experimental results showed that there was a host specificity found among the endophytic bacterial cultures with pulses. The cross inoculation of endophytic strains did not perform well to enhance the growth and yield of their alternate hosts. 


2018 ◽  
Vol 20 (1) ◽  
pp. 9
Author(s):  
Ryan Hilda Wandita ◽  
Sri Pujiyanto ◽  
Agung Suprihadi ◽  
Ratih Dewi Hastuti

Onions (Allium cepa L.) is one of the leading horticultural commodities in Indonesia and is often used as seasoning and traditional medicine. Onion has a high economic value and fluctuating prices so that domestic onion production needs to be improved, one of them with a presence of endophytic bacteria that act as plant growth promoting agent or Plant Growth Promoting Bacteria (PGPB). Endophytic bacteria isolated from the root, leaves, and bulbs. In this research has been tested endophytic bacteria of onion plants from Garut regency which has PGPB factors such as able to dissolve phosphate, and produce HCN. The results obtained 251 isolates of endophytic bacteria. Based on the characterization results, the superior isolates capable of dissolving phosphate with an average diameter of 0.45 cm is isolate II.B.1D.3, and 11 isolates capable of producing high HCN. These isolates can be used as PGPB agents so that they can be useful in increasing plant growth and onion production and biocontrol in suppressing pathogens. Keywords: PGPB, endophyte, onion, phosphate, HCN


2021 ◽  
Vol 12 (2) ◽  
pp. 1143-1150
Author(s):  
Lavanya J ◽  
Chanthosh S ◽  
Reshma Shrii ◽  
Viknesh V ◽  
Deepika S ◽  
...  

The study was aimed to find an alternate approach for chemicals used in agriculture to avoid microbial infections. Fungal pathogens cause different types of plant diseases and affect a majority of edible crops by destroying the tissues of the plant in a direct or indirect mechanism. So, an alternative approach led to the development of biocontrol agents using endophytic  bacteria. A total of 8 endophytic bacteria were isolated from the root, stem, and leaves of radish (Raphanus sativus). The antagonistic activity of these bacteria against the 2 isolated plant pathogenic fungi was determined in vitro. Two out of eight bacteria showed more than 50% inhibitory activity against one fungus, were further characterized using the 16s rRNA sequencing method. On the basis of the phylogenetic tree of the 16s rRNA method, the endophytic bacterial samples were identified as Tonsilliphilus suis  and Exiguobacterium aurantiacum against plant pathogenic Aspergillus flavus  isolated from Raphanus sativus, which makes them highly suitable as an alternative for chemical fertilizers to provide resistance to plant pathogenic fungi. The cell wall degrading activities such as protease activity, amylase activity, and plant growth-promoting properties such as Hydrogen cyanide (HCN), Indole acetic acid (IAA), ammonia production of these endophytic bacteria were evaluated. The results show that T. suis  is the most effective strain for radish growth development.


Author(s):  
Zaffar Mahdi Dar ◽  
Amjad Masood ◽  
Arshad Hussain Mughal ◽  
Malik Asif ◽  
Mushtaq Ahamd Malik

3 Biotech ◽  
2020 ◽  
Vol 10 (7) ◽  
Author(s):  
Mohammad Sayyar Khan ◽  
Junlian Gao ◽  
Mingfang Zhang ◽  
Xuqing Chen ◽  
The Su Moe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document