scholarly journals Colonization of Warsaw by the red fox Vulpes vulpes in the years 1976–2019

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mateusz Jackowiak ◽  
Jakub Gryz ◽  
Karolina Jasińska ◽  
Michał Brach ◽  
Leszek Bolibok ◽  
...  

AbstractThe red fox is one of the most adaptable carnivores inhabiting cities. The aim of our study was to describe the process of Warsaw colonization by the red fox. We focused on: (1) the fox distribution in Warsaw on the basis of presence-absence data (2005–2012) over a grid of 1 × 1 km2, (2) the process of settlement in 29 green areas (study periods 1976–1978, 2004–2012, and 2016–2019) in relation to habitat type, and (3) temporal and spatial patterns of the red fox incidents (1998–2015) reported by Warsaw citizens. We found out that: (1) the red fox penetrated the whole city (i.e. its presence was confirmed in all squares of the grid), (2) 21% of the green areas were colonized in 1976–1978 but 93% in 2016–2019. Forests and riparian habitats were occupied more frequently than parks and cemeteries in 1976–1978 with no difference in the further years; (3) the probability of the fox incidents increased over years, was higher in June-October, on working days, and around noon, and with the share of discontinuous urban fabric in the buffers around incident locations. Nevertheless, the incidents only partially reflect population abundance trends and activity patterns of the species, so should be treated cautiously.

Mammal Review ◽  
2021 ◽  
Author(s):  
Patricia A. Fleming ◽  
Heather M. Crawford ◽  
Alyson M. Stobo‐Wilson ◽  
Stuart J. Dawson ◽  
Christopher R. Dickman ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Margarita Gil-Fernández ◽  
Robert Harcourt ◽  
Thomas Newsome ◽  
Alison Towerton ◽  
Alexandra Carthey

Abstract With urban encroachment on wild landscapes accelerating globally, there is an urgent need to understand how wildlife is adapting to anthropogenic change. We compared the behaviour of the invasive red fox (Vulpes vulpes) at eight urban and eight peri-urban areas of Sydney, Australia. We observed fox behaviour around a lure and compared fox activity patterns to those of potential prey and to two domestic predators (dogs—Canis lupus familiaris and cats—Felis catus). We assessed the influence of site type, vegetation cover, and distance from habitation on fox behaviour, and compared the temporal activity patterns of urban and peri-urban red foxes. Urban red foxes were marginally more nocturnal than those in peri-urban areas (88% activity overlap). There was greater overlap of red fox activity patterns with introduced mammalian prey in urban areas compared with peri-urban areas (90% urban vs 84% peri-urban). Red fox temporal activity overlapped 78% with cats, but only 20% with dogs, across both site types. The high degree of overlap with cats and introduced mammalian prey is most likely explained by the nocturnal behaviour of these species, while pet dogs are generally kept in yards or indoors at night. The behavioural differences we documented by urban red foxes suggest they may adapt to human modifications and presence, by being more nocturnal and/or more confident in urban areas.


1993 ◽  
Vol 38 ◽  
pp. 427-434 ◽  
Author(s):  
Alejandro Travaini ◽  
Juán J. Aldama ◽  
Rafael Laffitte ◽  
Miguel Delibes

Author(s):  
James E. Crandall ◽  
Linda C. Hassinger ◽  
Gerald A. Schwarting

Cell surface glycoconjugates are considered to play important roles in cell-cell interactions in the developing central nervous system. We have previously described a group of monoclonal antibodies that recognize defined carbohydrate epitopes and reveal unique temporal and spatial patterns of immunoreactivity in the developing main and accessory olfactory systems in rats. Antibody CC2 reacts with complex α-galactosyl and α-fucosyl glycoproteins and glycolipids. Antibody CC1 reacts with terminal N-acetyl galactosamine residues of globoside-like glycolipids. Antibody 1B2 reacts with β-galactosyl glycolipids and glycoproteins. Our light microscopic data suggest that these antigens may be located on the surfaces of axons of the vomeronasal and olfactory nerves as well as on some of their target neurons in the main and accessory olfactory bulbs.


2016 ◽  
Author(s):  
Ines Pedro Perpetuo ◽  
Alessandro Felder ◽  
Andrew Pitsillides ◽  
Michael Doube ◽  
Isabel Orriss

2018 ◽  
Vol 8 (2) ◽  
pp. 334-336
Author(s):  
A. V. Matsyura

Here we presented the preliminary results of hawk kite usage against the feral pigeons in some grain processing factory. We studied the temporal and spatial patterns of repellent effect and bird behavior. We suggested the feral pigeons gradually increase the level of tolerance towards the hawk kite if no additional repellent measures were undertaken. Moreover, even initially the feral pigeons demonstrate higher tolerance towards the hawk kite compared to the Rooks or Hooded Crows.


Genetics ◽  
1996 ◽  
Vol 144 (1) ◽  
pp. 249-254 ◽  
Author(s):  
Sergei I Agulnik ◽  
Nancy Garvey ◽  
Sarah Hancock ◽  
Ilya Ruvinsky ◽  
Deborah L Chapman ◽  
...  

Abstract The T-box genes comprise an ancient family of putative transcription factors conserved across species as divergent as Mus musculus and Caenorhabditis elegans. All T-box gene products are characterized by a novel 174-186amino acid DNA binding domain called the T-box that was first discovered in the polypeptide products of the mouse T locus and the Drosophila melanogaster optomotor-blind gene. Earlier studies allowed the identification of five mouse T-box genes, T, Tbx1-3, and Tbr1, that all map to different chromosomal locations and are expressed in unique temporal and spatial patterns during embryogenesis. Here, we report the discovery of three new members of the mouse T-box gene family, named Tbx4, Tbx5, and Tbx6. Two of these newly discovered genes, Tbx4 and Tbx5, were found to be tightly linked to previously identified T-box genes. Combined results from phylogenetic, linkage, and physical mapping studies provide a picture for the evolution of a T-box subfamily by unequal crossing over to form a two-gene cluster that was duplicated and dispersed to two chromosomal locations. This analysis suggests that Tbx4 and Tbx5 are cognate genes that diverged apart from a common ancestral gene during early vertebrate evolution.


2012 ◽  
Vol 24 (4) ◽  
pp. 459-475 ◽  
Author(s):  
Magdalena Krajcarz ◽  
Maciej Tomasz Krajcarz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document