scholarly journals Genetic diversity of Colletotrichum lupini and its virulence on white and Andean lupin

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. A. Alkemade ◽  
M. M. Messmer ◽  
R. T. Voegele ◽  
M. R. Finckh ◽  
P. Hohmann

AbstractLupin cultivation worldwide is threatened by anthracnose, a destructive disease caused by the seed- and air-borne fungal pathogen Colletotrichum lupini. In this study we explored the intraspecific diversity of 39 C. lupini isolates collected from different lupin cultivating regions around the world, and representative isolates were screened for their pathogenicity and virulence on white and Andean lupin. Multi-locus phylogeny and morphological characterizations showed intraspecific diversity to be greater than previously shown, distinguishing a total of six genetic groups and ten distinct morphotypes. Highest diversity was found across South America, indicating it as the center of origin of C. lupini. The isolates that correspond to the current pandemic belong to a genetic and morphological uniform group, were globally widespread, and showed high virulence on tested white and Andean lupin accessions. Isolates belonging to the other five genetic groups were mostly found locally and showed distinct virulence patterns. Two highly virulent strains were shown to overcome resistance of advanced white lupin breeding material. This stresses the need to be careful with international seed transports in order to prevent spread of currently confined but potentially highly virulent strains. This study improves our understanding of the diversity, phylogeography and pathogenicity of a member of one of the world’s top 10 plant pathogen genera, providing valuable information for breeding programs and future disease management.

2019 ◽  
Author(s):  
Aurélien Chateigner ◽  
Yannis Moreau ◽  
Davy Jiolle ◽  
Cindy Pontlevé ◽  
Carole Labrousse ◽  
...  

AbstractPathogens should evolve to avirulence. However, while baculoviruses can be transmitted through direct contact, their main route of infection goes through the death and liquefaction of their caterpillar hosts and highly virulent strains still seem to be advantaged through infection cycles. Furthermore, one of them,Autographa californicamultiple nucleopolyhedrovirus, is so generalist that it can infect more than 100 different hosts.To understand and characterize the evolutionary potential of this virus and how it is maintained while killing some of its hosts in less than a week, we performed an experimental evolution starting from an almost natural isolate of AcMNPV, known for its generalist infection capacity. We made it evolve on 4 hosts of different susceptibilities for 10 cycles and followed hosts survival each day. We finally evaluated whether the generalist capacity was maintained after evolving on one specific host species and tested an epidemiological model through simulations to understand how.Finally, on very highly susceptible hosts, transmission-virulence trade-offs seem to disappear and the virus can maximize transmission and virulence. When less adapted to its host, the pathogen’s virulence has not been modified along cycles but the yield was increased, apparently through an increased transmission probability and an increased latent period between exposition and infection.


Author(s):  
Mohammad Asgharzadeh ◽  
Jalil Rashedi ◽  
Behroz Mahdavi Poor ◽  
Hossein Samadi kafil ◽  
Hossein Moharram Zadeh ◽  
...  

: Nowadays, due to the incidence of specific strains of Mycobacterium tuberculosis and also increase the rate of drug resistant-TB mortality rate has elevated by this disease. Identification of common strains in the region as well as sources of transmission are essential to control the disease that this has been possible by using molecular epidemiology. In this survey, studies which have been carried out based on spoligotyping method in Muslim Middle East countries were considered to determine their role in control of TB. All studies conducted from 2005 to June 2016 were considered systematically in three electronic data bases and finally, 23 studies were selected. The average rate of clustering was 84% and the rate of recent transmission was variable from 21.7% to 92.4%. Incidence of Beijing strains was been rising in the considered countries. In Iran and Saudi Arabia which are immigration and labour-hosting countries, respectively, rapid transmittable strains and drug resistant Beijings were higher than other considered countries. Considering the incidence of highly virulent strains, due to the increase of immigration and people infected with HIV, tuberculosis, especially drug resistant form, the lack of close monitoring in the future will be induce trouble.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Lukas Schuwerk ◽  
Doris Hoeltig ◽  
Karl-Heinz Waldmann ◽  
Peter Valentin-Weigand ◽  
Judith Rohde

AbstractSerotyping is the most common method to characterize field isolates of Actinobacillus (A.) pleuropneumoniae, the etiological agent of porcine pleuropneumonia. Based on serology, many farms seem to be infected and antibodies against a wide variety of serovars are detectable, but, so far it is unknown to what degree respective serovars contribute to outbreaks of clinical manifest disease. In this study, 213 German A. pleuropneumoniae field isolates retrieved for diagnostic purposes from outbreaks of porcine pleuropneumonia between 2010 and 2019 were genetically serotyped and analyzed regarding their apx-toxin gene profile using molecular methods. Serotyping revealed a prominent role of serovar 2 in clinical cases (64% of all isolates) and an increase in the detection of this serovar since 2010 in German isolates. Serovar 9/11 followed as the second most frequent serovar with about 15% of the isolates. Furthermore, very recently described serovars 16 (n = 2) and 18 (n = 8) were detected. Most isolates (93.4%) showed apx-profiles typical for the respective serovar. However, this does not hold true for isolates of serovar 18, as 75% (n = 6) of all isolates of this serovar deviated uniformly from the “typical” apx-gene profile of the reference strain 7311555. Notably, isolates from systemic lesions such as joints or meninges did not harbor the complete apxICABD operon which is considered typical for highly virulent strains. Furthermore, the extremely low occurrence (n = 1) of NAD independent (biovar II) isolates in German A. pleuropneumoniae was evident in our collection of clinical isolates.


2020 ◽  
Vol 110 (10) ◽  
pp. 1604-1619 ◽  
Author(s):  
Jorge R. Díaz-Valderrama ◽  
Santos T. Leiva-Espinoza ◽  
M. Catherine Aime

Cacao is a commodity crop from the tropics cultivated by about 6 million smallholder farmers. The tree, Theobroma cacao, originated in the Upper Amazon where it was domesticated ca. 5450 to 5300 B.P. From this center of origin, cacao was dispersed and cultivated in Mesoamerica as early as 3800 to 3000 B.P. After the European conquest of the Americas (the 1500s), cacao cultivation intensified in several loci, primarily Mesoamerica, Trinidad, Venezuela, and Ecuador. It was during the colonial period that cacao diseases began emerging as threats to production. One early example is the collapse of the cacao industry in Trinidad in the 1720s, attributed to an unknown disease referred to as the “blast”. Trinidad would resurface as a production center due to the discovery of the Trinitario genetic group, which is still widely used in breeding programs around the world. However, a resurgence of diseases like frosty pod rot during the republican period (the late 1800s and early 1900s) had profound impacts on other centers of Latin American production, especially in Venezuela and Ecuador, shifting the focus of cacao production southward, to Bahia, Brazil. Production in Bahia was, in turn, dramatically curtailed by the introduction of witches’ broom disease in the late 1980s. Today, most of the world’s cacao production occurs in West Africa and parts of Asia, where the primary Latin American diseases have not yet spread. In this review, we discuss the history of cacao cultivation in the Americas and how that history has been shaped by the emergence of diseases.


Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 527-534 ◽  
Author(s):  
Lisa A. Jones ◽  
Surya Saha ◽  
Alan Collmer ◽  
Christine D. Smart ◽  
Magdalen Lindeberg

A severe outbreak of bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, occurred in central New York in 2009. Isolate 09150, collected from this outbreak and subsequently named NYS-T1, was found to be highly virulent on tomato. To better understand the relationship of 09150 to other P. syringae strains and develop a diagnostic assay for aggressive strains of this pathogen, the 09150 genome was sequenced. Genome comparison revealed it to be highly similar to a previously sequenced isolate, T1. Genetic factors linked to host interaction including type III effectors, toxin biosynthetic genes, and elicitors of host innate immunity were identified. Type III effector repertoires were compared with other strains in the high virulence T1-like subgroup and lower virulence DC3000/P. syringae pv. maculicola subgroup within P. syringae phylogenetic Group I. Primers for conventional PCR were developed using sequences for avrA, hopW, conserved in the former subgroup and hopN, present in the latter. These were tested on isolates in the two subgroups, other pseudomonads, and other bacterial pathogens of tomato. Primers developed for avaA and hopW were diagnostic for more virulent strains of P. syringae pv. tomato while primers for hopN were diagnostic for P. syringae pv. tomato DC3000 and related P. syringe pv. maculicola strains. Primers designed against hopR distinguished both of these P. syringae subgroups from other P. syringae strains.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1799
Author(s):  
Eleonora Barilli ◽  
Juan Moral ◽  
Thaïs Aznar-Fernández ◽  
Diego Rubiales

Anthracnose, caused by the fungal pathogen Colletotrichum lentis, is a severe disease of lentil (Lens culinaris) causing premature defoliation, necrotic stem lesions that lead to plant wilting and death in susceptible varieties. Two races of C. lentis (0 and 1) have been described so far. Race 0 is the most virulent one and limited genetic resistance is available to date. To address this scarcity of resistance, we screened a germplasm collection covering different Lens spp. originating from different countries for C. lentis race 0 resistance. Leaf and stem damage and plant mortality were assessed on seedlings inoculated under controlled conditions. A significant variability was observed among accession. Most of the collection studied was highly susceptible, but some levels of resistance were identified in about 15% of the accessions. The highest levels of resistance were identified in L. ervoides accessions PI572330, PI572334 and PI572338. Moderate resistance was also identified in 10 L. culinaris ssp. culinaris accessions but not in the remaining species studied. Selected accessions showed potential to integrate several breeding programs.


2019 ◽  
Vol 7 (11) ◽  
pp. 510 ◽  
Author(s):  
Ze-Xiang Wang ◽  
Rui-Si Hu ◽  
Chun-Xue Zhou ◽  
Jun-Jun He ◽  
Hany M. Elsheikha ◽  
...  

Distinct genotypic and pathogenic differences exist between Toxoplasma gondii genotypes. For example, genotype I is highly virulent, whereas genotype II and genotype III are less virulent. Moreover, Chinese 1 genotype (ToxoDB#9) is also virulent. Here, we compare the acetylomes of genotype 1 (RH strain) and Chinese 1 genotype (ToxoDB#9, PYS strain) of T. gondii. Using mass spectrometry enriched for acetylated peptides, we found a relationship between the levels of protein acetylation and parasite genotype-specific virulence. Notably, lysine acetylation was the largest (458 acetylated proteins) in RH strain, followed by PYS strain (188 acetylated proteins), whereas only 115 acetylated proteins were detected in PRU strain. Our analysis revealed four, three, and four motifs in RH strain, PRU strain and PYS strain, respectively. Three conserved sequences around acetylation sites, namely, xxxxxKAcHxxxx, xxxxxKAcFxxxx, and xxxxGKAcSxxxx, were detected in the acetylome of the three strains. However, xxxxxKAcNxxxx (asparagine) was found in RH and PYS strains but was absent in PRU strain. Our analysis also identified 15, 3, and 26 differentially expressed acetylated proteins in RH strain vs. PRU strain, PRU strain vs. PYS strain and PYS strain vs. RH strain, respectively. KEGG pathway analysis showed that a large proportion of the acetylated proteins are involved in metabolic processes. Pathways for the biosynthesis of secondary metabolites, biosynthesis of antibiotics and microbial metabolism in diverse environments were featured in the top five enriched pathways in all three strains. However, acetylated proteins from the virulent strains (RH and PYS) were more enriched in the pyruvate metabolism pathway compared to acetylated proteins from PRU strain. Increased levels of histone-acetyl-transferase and glycyl-tRNA synthase were detected in RH strain compared to PRU strain and PYS strain. Both enzymes play roles in stress tolerance and proliferation, key features in the parasite virulence. These findings reveal novel insight into the acetylomic profiles of major T. gondii genotypes and provide a new important resource for further investigations of the roles of the acetylated parasite proteins in the modulation of the host cell response to the infection of T. gondii.


Sign in / Sign up

Export Citation Format

Share Document