scholarly journals The mitochondrial genome of the grape powdery mildew pathogen Erysiphe necator is intron rich and exhibits a distinct gene organization

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alex Z. Zaccaron ◽  
Jorge T. De Souza ◽  
Ioannis Stergiopoulos

AbstractPowdery mildews are notorious fungal plant pathogens but only limited information exists on their genomes. Here we present the mitochondrial genome of the grape powdery mildew fungus Erysiphe necator and a high-quality mitochondrial gene annotation generated through cloning and Sanger sequencing of full-length cDNA clones. The E. necator mitochondrial genome consists of a circular DNA sequence of 188,577 bp that harbors a core set of 14 protein-coding genes that are typically present in fungal mitochondrial genomes, along with genes encoding the small and large ribosomal subunits, a ribosomal protein S3, and 25 mitochondrial-encoded transfer RNAs (mt-tRNAs). Interestingly, it also exhibits a distinct gene organization with atypical bicistronic-like expression of the nad4L/nad5 and atp6/nad3 gene pairs, and contains a large number of 70 introns, making it one of the richest in introns mitochondrial genomes among fungi. Sixty-four intronic ORFs were also found, most of which encoded homing endonucleases of the LAGLIDADG or GIY-YIG families. Further comparative analysis of five E. necator isolates revealed 203 polymorphic sites, but only five were located within exons of the core mitochondrial genes. These results provide insights into the organization of mitochondrial genomes of powdery mildews and represent valuable resources for population genetic and evolutionary studies.

2011 ◽  
Vol 101 (7) ◽  
pp. 839-846 ◽  
Author(s):  
Laura Wakefield ◽  
David M. Gadoury ◽  
Robert C. Seem ◽  
Michael G. Milgroom ◽  
Qi Sun ◽  
...  

Asexual sporulation (conidiation) is coordinately regulated in the grape powdery mildew pathogen Erysiphe necator but nothing is known about its genetic regulation. We hypothesized that genes required for conidiation in other fungi would be upregulated at conidiophore initiation or full conidiation (relative to preconidiation vegetative growth and development of mature ascocarps), and that the obligate biotrophic lifestyle of E. necator would necessitate some novel gene regulation. cDNA amplified fragment length polymorphism analysis with 45 selective primer combinations produced ≈1,600 transcript-derived fragments (TDFs), of which 620 (39%) showed differential expression. TDF sequences were annotated using BLAST analysis of GenBank and of a reference transcriptome for E. necator developed by 454-FLX pyrosequencing of a normalized cDNA library. One-fourth of the differentially expressed, annotated sequences had similarity to fungal genes of unknown function. The remaining genes had annotated function in metabolism, signaling, transcription, transport, and protein fate. As expected, a portion of orthologs known in other fungi to be involved in developmental regulation was upregulated immediately prior to or during conidiation; particularly noteworthy were several genes associated with the light-dependent VeA regulatory system, G-protein signaling (Pth11 and a kelch repeat), and nuclear transport (importin-β and Ran). This work represents the first investigation into differential gene expression during morphogenesis in E. necator and identifies candidate genes and hypotheses for characterization in powdery mildews. Our results indicate that, although control of conidiation in powdery mildews may share some basic elements with established systems, there are significant points of divergence as well, perhaps due, in part, to the obligate biotrophic lifestyle of powdery mildews.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 1081 ◽  
Author(s):  
Laura Jones ◽  
Summaira Riaz ◽  
Abraham Morales-Cruz ◽  
Katherine CH Amrine ◽  
Brianna McGuire ◽  
...  

2005 ◽  
Vol 113 (4) ◽  
pp. 407-416 ◽  
Author(s):  
Jean-Pierre Péros ◽  
Claire Troulet ◽  
Mikaël Guerriero ◽  
Corinne Michel-Romiti ◽  
Jean-Loup Notteghem

2011 ◽  
Vol 57 (6) ◽  
pp. 785-805 ◽  
Author(s):  
Guiying Chen ◽  
Bin Wang ◽  
Jiongyu Liu ◽  
Feng Xie ◽  
Jianping Jiang

Abstract The complete mitochondrial genome of Nanorana pleskei from the Qinghai-Tibet Plateau was sequenced. It includes 17,660 base pairs, containing 13 protein-coding genes, two rRNAs and 23 tRNAs. A tandem duplication of tRNAMet gene was found in this mitochondrial genome, and the similarity between the two tRNAMet genes is 85.8%, being the highest in amphibian mitochondrial genomes sequenced thus far. Based on gene organization, 24 types were found from 145 amphibian mitochondrial genomes. Type 1 was present in 108 species, type 11 in 11 species, types 5, 16, 17, and 20 each in two species, and the others each present in one species. Fifteen types were found in Anura, being the most diversity in three orders of the Lissamphibia. Our phylogenetic results using 11 protein-coding gene sequences of 145 amphibian mitochondrial genomes strongly support the monophyly of the Lissamphibia, as well as its three orders, the Gymnophiona, Caudata, and Anura, among which the relationships were ((Gymnophiona (Caudata, Anura)). Based on the phylogenetic trees, type 1 was recognized as the ancestral type for amphibians, and type 11 was the synapomorphic type for the Neobatrachia. Gene rearrangements among lineages provide meaningful phylogenetic information. The rearrangement of the LTPF tRNA gene cluster and the translocation of the ND5 gene only found in the Neobatrachia support the monophyly of this group; similarly, the tandem duplication of the tRNAMet genes only found in the Dicroglossidae support the monophyly of this family.


Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2586-2591 ◽  
Author(s):  
Xuewen Feng ◽  
Mizuho Nita ◽  
Anton B. Baudoin

The protectant fungicide quinoxyfen has been used against grape powdery mildew (Erysiphe necator) in the United States since 2003. In 2013, isolates of grape powdery mildew with reduced quinoxyfen sensitivity (here designated as quinoxyfen lab resistance or QLR) were detected in a single vineyard in western Virginia, USA. Field trials were conducted in 2014, 2015, and 2016 at the affected vineyard to determine to what extent quinoxyfen might still contribute to disease control. Powdery mildew control by quinoxyfen was similar to, or only slightly less than, that provided by myclobutanil and boscalid in all three years. In 2016, early- versus late-season applications of quinoxyfen were compared to test the hypothesis that early-season applications were more effective, but differences were small. A treatment with two early quinoxyfen applications, at bloom and 2 weeks later, followed by a myclobutanil-boscalid plus a low dose of sulfur rotation provided slightly better control of foliar disease incidence than treatments containing four quinoxyfen applications or two midseason or two late quinoxyfen applications supplemented by myclobutanil and boscalid applications; severity differences were small and nonsignificant. Metrafenone and benzovindiflupyr generally provided excellent powdery mildew control. The frequency of QLR in vines not treated with quinoxyfen slowly declined from 65% in 2014 to 46% in 2016. Further research is needed to explain how, despite this QLR frequency, quinoxyfen applied to grapes in the field was still able to effectively control powdery mildew.


2018 ◽  
Vol 19 (2) ◽  
pp. 153-155
Author(s):  
L. D. Thiessen ◽  
T. M. Neill ◽  
W. F. Mahaffee

Grape powdery mildew epidemics, caused by Erysiphe necator, are initiated by the release and subsequent germination of ascospores from mature chasmothecia. Interrupting the development of chasmothecia prior to overwintering may reduce or prevent the overwintering of E. necator in vineyards, thereby reducing initial disease incidence observed the following growing season. At the end of the grape growing season in 2014 and 2015, one application of Organic JMS Stylet Oil (Vero Beach, FL) at a rate of 10 ml/liter was applied on four treatment dates using an air-assisted backpack sprayer onto Chardonnay grapevines within a vineyard. Leaves were collected weekly and chasmothecia enumerated from the first observation of chasmothecia primordia development until the onset of rains (approximately 5 weeks). In 2014, all stylet oil treatment plots developed significantly fewer chasmothecia than nontreated control plots in 2014 (P = 0.04), and there were no differences in treatment date observed. No treatment differences were observed in 2015. Because chasmothecia were still produced despite stylet oil treatment, a single post-véraison stylet oil application to interrupt chasmothecia development would not be an economical management option for reduction of grape powdery mildew.


Genome ◽  
2009 ◽  
Vol 52 (4) ◽  
pp. 299-307 ◽  
Author(s):  
Grzegorz Bartoszewski ◽  
Piotr Gawronski ◽  
Marek Szklarczyk ◽  
Henk Verbakel ◽  
Michael J. Havey

Cucumber ( Cucumis sativus ) has one of the largest mitochondrial genomes known among all eukaryotes, due in part to the accumulation of short 20 to 60 bp repetitive DNA motifs. Recombination among these repetitive DNAs produces rearrangements affecting organization and expression of mitochondrial genes. To more efficiently identify rearrangements in the cucumber mitochondrial DNA, we built two nonoverlapping 800 and 220 kb BAC contigs and assigned major mitochondrial genes to these BACs. Polymorphism carried on the largest BAC contig was used to confirm paternal transmission. Mitochondrial genes were distributed across BACs and physically distant, although occasional clustering was observed. Introns in the nad1, nad4, and nad7 genes were larger than those reported in other plants, due in part to accumulation of short repetitive DNAs and indicating that increased intron sizes contributed to mitochondrial genome expansion in cucumber. Mitochondrial genes atp6 and atp9 are physically close to each other and cotranscribed. These physical contigs will be useful for eventual sequencing of the cucumber mitochondrial DNA, which can be exploited to more efficiently screen for unique rearrangements affecting mitochondrial gene expression.


Sign in / Sign up

Export Citation Format

Share Document