scholarly journals Interactive effects of the APOE and BDNF polymorphisms on functional brain connectivity: the Tasmanian Healthy Brain Project

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manuela Pietzuch ◽  
Aidan Bindoff ◽  
Sharna Jamadar ◽  
James C. Vickers

AbstractResting-state functional magnetic resonance imaging measures pathological alterations in neurodegenerative diseases, including Alzheimer’s disease. Disruption in functional connectivity may be a potential biomarker of ageing and early brain changes associated with AD-related genes, such as APOE and BDNF. The objective of this study was to identify group differences in resting-state networks between individuals with BDNF Val66Met and APOE polymorphisms in cognitively healthy older persons. Dual regression following Independent Components Analysis were performed to examine differences associated with these polymorphisms. APOE ε3 homozygotes showed stronger functional connectivity than APOE ε4 carriers. Males showed stronger functional connectivity between the Default Mode Network (DMN) and grey matter premotor cortex, while females showed stronger functional connectivity between the executive network and lateral occipital cortex and parahippocampal gyrus. Additionally, we found that with increasing cognitive reserve, functional connectivity increased within the Dorsal Attention Network (DAN), but decreased within the DMN. Interaction effects indicated stronger functional connectivity in Met/ε3 carriers than in Met/ε4 and Val/ε4 within both the DMN and DAN. APOE/BDNF interactions may therefore influence the integrity of functional brain connections in older adults, and may underlie a vulnerable phenotype for subsequent Alzheimer’s-type dementia.

Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 128 ◽  
Author(s):  
Aline Viol ◽  
Fernanda Palhano-Fontes ◽  
Heloisa Onias ◽  
Draulio de Araujo ◽  
Philipp Hövel ◽  
...  

With the aim of further advancing the understanding of the human brain’s functional connectivity, we propose a network metric which we term the geodesic entropy. This metric quantifies the Shannon entropy of the distance distribution to a specific node from all other nodes. It allows to characterize the influence exerted on a specific node considering statistics of the overall network structure. The measurement and characterization of this structural information has the potential to greatly improve our understanding of sustained activity and other emergent behaviors in networks. We apply this method to study how the psychedelic infusion Ayahuasca affects the functional connectivity of the human brain in resting state. We show that the geodesic entropy is able to differentiate functional networks of the human brain associated with two different states of consciousness in the awaking resting state: (i) the ordinary state and (ii) a state altered by ingestion of the Ayahuasca. The functional brain networks from subjects in the altered state have, on average, a larger geodesic entropy compared to the ordinary state. Finally, we discuss why the geodesic entropy may bring even further valuable insights into the study of the human brain and other empirical networks.


2021 ◽  
Vol 15 ◽  
Author(s):  
Andy Schumann ◽  
Feliberto de la Cruz ◽  
Stefanie Köhler ◽  
Lisa Brotte ◽  
Karl-Jürgen Bär

BackgroundHeart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects.MethodsHRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played jump‘n’run games instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC.ResultsFirst, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, the left insula, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.2 beats/min and an increased SDNN as a measure of HRV by 8.6 ms (18%) after the intervention. Functional connectivity of the VMPFC increased mainly to the insula, the amygdala, the middle cingulate cortex, and lateral prefrontal regions after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions.ConclusionOur results show that increased heart rate variability induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.


2019 ◽  
Author(s):  
Janine D. Bijsterbosch ◽  
Christian F. Beckmann ◽  
Mark W. Woolrich ◽  
Stephen M. Smith ◽  
Samuel J. Harrison

AbstractIn our previous paper (Bijsterbosch et al., 2018), we showed that network-based modelling of brain connectivity interacts strongly with the shape and exact location of brain regions, such that cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Here we show that these spatial effects on connectivity estimates actually occur as a result of spatial overlap between brain networks. This is shown to systematically bias connectivity estimates obtained from group spatial ICA followed by dual regression. We introduce an extended method that addresses the bias and achieves more accurate connectivity estimates.Impact statementWe show that functional connectivity network matrices as estimated from resting state functional MRI are biased by spatially overlapping network structure.


2021 ◽  
pp. 1-10
Author(s):  
Stefania Pezzoli ◽  
Matteo De Marco ◽  
Giovanni Zorzi ◽  
Annachiara Cagnin ◽  
Annalena Venneri

Background: The presence of recurrent, complex visual hallucinations (VH) is among the core clinical features of dementia with Lewy bodies (DLB). It has been proposed that VH arise from a disrupted organization of functional brain networks. However, studies are still limited, especially investigating the resting-state functional brain features underpinning VH in patients with dementia. Objective: The aim of the present pilot study was to investigate whether there were any alterations in functional connectivity associated with VH in DLB. Methods: Seed-based analyses and independent component analysis (ICA) of resting-state fMRI scans were carried out to explore differences in functional connectivity between DLB patients with and without VH. Results: Seed-based analyses reported decreased connectivity of the lateral geniculate nucleus, the superior parietal lobule and the putamen with the medial frontal gyrus in DLB patients with VH. Visual areas showed a pattern of both decreased and increased functional connectivity. ICA revealed between-group differences in the default mode network (DMN). Conclusion: Functional connectivity analyses suggest dysfunctional top-down and bottom-up processes and DMN-related alterations in DLB patients with VH. These impairments might foster the generation of false visual images that are misinterpreted, ultimately resulting in VH.


2020 ◽  
Author(s):  
Andy Schumann ◽  
Feliberto de la Cruz ◽  
Stefanie Köhler ◽  
Lisa Brotte ◽  
Karl-Jürgen Bär

AbstractBackgroundHeart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects.MethodsHRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played jump‘n’run games instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC.ResultsFirst, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, left anterior insula, right amygdala, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.5 beats/min and an increased RMSSD as a measure of HRV by 10.1ms (33%) after the intervention. Functional connectivity of the VMPFC increased mainly to the right anterior insula, the dorsal anterior cingulate cortex and the dorsolateral prefrontal cortex after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions.ConclusionOur results show that increased vagal modulation induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
E. S. Beyer ◽  
M. F. Miller ◽  
T. H. Davis ◽  
J. F. Legako

ObjectivesUnderstanding functional connectivity after consuming meat can be essential to fully understanding consumer’s preferences and the connection to certain flavor compounds. The objective of this study was to determine differences in the functional brain connectivity of consumers after consuming grass-fed beef, grain-fed beef and chicken while determining the different chemical and volatile components that differentiate the treatments.Materials and MethodsGrass-fed strip steaks, Grain-fed strip steaks and chicken breasts were collected, aged 21 d and cut into 1×1-inch consumer steaks. Each steak was vacuum sealed with a random identification number and frozen at –20°C. 23 volunteered consumers evaluated each treatment randomly followed by a Blood Oxygen Level-Dependent (BOLD) fMRI scan. Each consumer received a resting state scan and three scans following each sample. The beef was cooked to a medium degree of doneness (71°C) and the chicken was cooked to a well-done degree of doneness (75°C), followed by a 1-min resting period. The consumers were asked to complete a sensory ballot for each sample to quantify tenderness, juiciness, flavor, overall liking and quality. Each attribute was evaluated on a 100mm line scale. The sensory ballot, volatile and fatty acid data were analyzed by ANOVA and multiple means comparison using SAS while the fMRI data were analyzed using FSL’s FEAT software.ResultsThe results indicated all treatments were equal for tenderness and flavor, but the chicken was the least juicy (P < 0.05) and the grain-fed steak was ranked higher for overall liking (P < 0.05) in comparison to chicken. Furthermore, based on an independent component analysis, there was a significant difference in the functional connectivity (P < 0.05) from the resting state scan to all three treatments within the insular, medial prefrontal cortex, and amygdala regions. Additionally, there were significant differences in connectivity (P < 0.05) between the insula and orbitofrontal cortex in grass-fed compared to grain-fed beef. These areas are involved in processing sensory characteristics related to smell and taste and tend to track differences in preferences and stimulus value. Also, the samples were evaluated for volatile compounds with GC–MS and fatty acids using the FAMES method. Chicken and grass-fed beef was found to have a higher concentration (P < 0.05) of dimethyl sulfone in comparison to grain-fed beef, while the grass-fed steaks possessed a higher concentration (P < 0.05) of toluene in comparison to grain-fed steaks, but not differing from chicken. Dimethyl sulfone and toluene have been tied to grass-fed beef and chicken flavor profiles (Tansawat et al., 2013).ConclusionThe results from the functional brain connectivity in the reward pathways and the chemical components of the different treatments indicated a trend for grain-fed beef to be the most different from grass-fed beef and chicken. Moreover, tying brain activity to the flavor and chemical components in meat can be vital in understanding consumer’s preferences not observed in behavior alone. Therefore, these results can provide a basis to determine the ability to track reactions within the functional connectivity in the brain and the chemical aspects of different steaks to determine and understand consumer’s preferences and the true value of beef and chicken.


2021 ◽  
pp. 1-11
Author(s):  
Namita Sharma ◽  
Geetanjali Murari ◽  
Susan Vandermorris ◽  
Nicolaas Paul L.G. Verhoeff ◽  
Nathan Herrmann ◽  
...  

Background: Subjective cognitive decline (SCD) is associated with increased risk of developing Alzheimer’s disease (AD). However, the underlying mechanisms for this association remain unclear. Neuroimaging studies suggest the earliest AD-related changes are large-scale network disruptions, beginning in the posterior default mode (pDMN) network. Objective: To examine the association between SCD and pDMN network connectivity with medial temporal lobe (MTL) regions using resting-state functional magnetic resonance imaging. Methods: Forty-nine participants with either SCD (n = 23, 12 females; mean age: 70.7 (5.5)) or who were cognitively unimpaired (CU; n = 26, 16 females, mean age: 71.42 (7.3)) completed the Memory Functioning Questionnaire, a measure of subjective memory, and underwent resting state functional MRI at 3 Tesla. Functional connectivity between the posterior cingulate cortex (PCC), as the key pDMN node, and MTL regions were compared between SCD and CU groups. Further, the association between pDMN-MTL connectivity and the Frequency of Forgetting subscale of the Memory Functioning Questionnaire was examined. Results: Connectivity between the PCC-MTL was observed in the CU group but was absent in SCD (t(47) = 2.69, p = 0.01). Across all participants, self-perception of frequency of forgetting, but not objective memory, was strongly correlated with connectivity between the PCC-left parahippocampal gyrus (r = 0.43, p = 0.002). Conclusion: These findings support the hypothesis that increased AD risk in SCD may be mediated by disrupted pDMN-parahippocampal connectivity. In addition, these findings suggest that frequency of forgetting may serve as a potential biomarker of SCD due to incipient AD.


Author(s):  
Barnaly Rashid ◽  
Victoria N. Poole ◽  
Francesca C. Fortenbaugh ◽  
Michael Esterman ◽  
William P. Milberg ◽  
...  

NeuroImage ◽  
2021 ◽  
pp. 118368
Author(s):  
Dorine Van Dyck ◽  
Nicolas Deconinck ◽  
Alec Aeby ◽  
Simon Baijot ◽  
Nicolas Coquelet ◽  
...  

2021 ◽  
Vol 160 (6) ◽  
pp. S-148-S-149
Author(s):  
Harrison P. Fisher ◽  
Roberta Sclocco ◽  
Rowan Staley ◽  
Kyungsun Han ◽  
April Mendez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document