scholarly journals Ambient air pollution and cardiovascular disease rate an ANN modeling: Yazd-Central of Iran

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahrokh Jalili ◽  
Mohammad Hassan Ehrampoush ◽  
Mehdi Mokhtari ◽  
Ali Asghar Ebrahimi ◽  
Faezeh Mazidi ◽  
...  

AbstractThis study was aimed to investigate the air pollutants impact on heart patient's hospital admission rates in Yazd for the first time. Modeling was done by time series, multivariate linear regression, and artificial neural network (ANN). During 5 years, the mean concentrations of PM10, SO2, O3, NO2, and CO were 98.48 μg m−3, 8.57 ppm, 19.66 ppm, 18.14 ppm, and 4.07 ppm, respectively. The total number of cardiovascular disease (CD) patients was 12,491, of which 57% and 43% were related to men and women, respectively. The maximum correlation of air pollutants was observed between CO and PM10 (R = 0.62). The presence of SO2 and NO2 can be dependent on meteorological parameters (R = 0.48). Despite there was a positive correlation between age and CD (p = 0.001), the highest correlation was detected between SO2 and CD (R = 0.4). The annual variation trend of SO2, NO2, and CO concentrations was more similar to the variations trend in meteorological parameters. Moreover, the temperature had also been an effective factor in the O3 variation rate at lag = 0. On the other hand, SO2 has been the most effective contaminant in CD patient admissions in hospitals (R = 0.45). In the monthly database classification, SO2 and NO2 were the most prominent factors in the CD (R = 0.5). The multivariate linear regression model also showed that CO and SO2 were significant contaminants in the number of hospital admissions (R = 0.46, p = 0.001) that both pollutants were a function of air temperature (p = 0.002). In the ANN nonlinear model, the 14, 12, 10, and 13 neurons in the hidden layer were formed the best structure for PM, NO2, O3, and SO2, respectively. Thus, the Rall rate for these structures was 0.78–0.83. In these structures, according to the autocorrelation of error in lag = 0, the series are stationary, which makes it possible to predict using this model. According to the results, the artificial neural network had a good ability to predict the relationship between the effect of air pollutants on the CD in a 5 years' time series.

Author(s):  
Jiaqi Lyu ◽  
Souran Manoochehri

Abstract With the development of Fused Deposition Modeling (FDM) technology, the quality of fabricated parts is getting more attention. The present study highlights the predictive model for dimensional accuracy in the FDM process. Three process parameters, namely extruder temperature, layer thickness, and infill density, are considered in the model. To achieve better prediction accuracy, three models are studied, namely multivariate linear regression, Artificial Neural Network (ANN), and Support Vector Regression (SVR). The models are used to characterize the complex relationship between the input variables and dimensions of fabricated parts. Based on the experimental data set, it is found that the ANN model performs better than the multivariate linear regression and SVR models. The ANN model is able to study more quality characteristics of fabricated parts with more process parameters of FDM.


2019 ◽  
Vol 13 (4) ◽  
pp. 1133-1148
Author(s):  
Behnam Hamedi ◽  
Alireza Mokhtar

Purpose The purpose of this study is to investigate and analysis of energy consumption for this industry. The core part of any energy management system (EnMS) in industry is to perfectly monitor the energy consumption of significant users and to continuously improve the energy performance. In petrochemical plants, production deals with energy-intensive processes, and measuring energy performance for recognition and assessment of potentials for saving is critical. Design/methodology/approach The required data are exploited for the period of March 2011-August 2016 (data set: 2,012 days). Multivariate linear regression (MLR) and multi-layer perceptron artificial neural network (ANN) methods are separately used to anticipate the energy consumption. The baseline will be assumed as a reference to be compared with the actual data to estimate the real saving values. Finally, cumulative summations (CUSUM) are proposed and applied as an effective indicator for measurement of energy performance in an LDPE. Findings In this study, two statistical methods of MLR and ANN were used to design and develop a comprehensive energy baseline representing the predicted amounts of energy consumption based on the recognized drivers. Although both models imply robust outcomes, when the relative errors are taken into account, performance of ANN models appears fairly superior compared to the MLR model. Originality/value It is highly suggested to the ISO technical committee dealing with energy management standards, to consider the proposed model for baseline development in the future version of the standard ISO 50006 as the supplementary extension for the ISO 50001 for measuring energy performance using EnB and EnPI. As for future studies, the research can be extended to investigate the uncertainty and the model could also become completed applying more advanced ANNs such as recurrent neural networks.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1158 ◽  
Author(s):  
Katerina Tsakiri ◽  
Antonios Marsellos ◽  
Stelios Kapetanakis

This research introduces a hybrid model for forecasting river flood events with an example of the Mohawk River in New York. Time series analysis and artificial neural networks are combined for the explanation and forecasting of the daily water discharge using hydrogeological and climatic variables. A low pass filter (Kolmogorov–Zurbenko filter) is applied for the decomposition of the time series into different components (long, seasonal, and short-term components). For the prediction of the water discharge time series, each component has been described by applying the multiple linear regression models (MLR), and the artificial neural network (ANN) model. The MLR retains the advantage of the physical interpretation of the water discharge time series. We prove that time series decomposition is essential before the application of any model. Also, decomposition shows that the Mohawk River is affected by multiple time scale components that contribute to the hydrologic cycle of the included watersheds. Comparison of the models proves that the application of the ANN on the decomposed time series improves the accuracy of forecasting flood events. The hybrid model which consists of time series decomposition and artificial neural network leads to a forecasting up to 96% of the explanation for the water discharge time series.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Charles Gbenga Williams ◽  
Oluwapelumi O. Ojuri

AbstractAs a result of heterogeneity nature of soils and variation in its hydraulic conductivity over several orders of magnitude for various soil types from fine-grained to coarse-grained soils, predictive methods to estimate hydraulic conductivity of soils from properties considered more easily obtainable have now been given an appropriate consideration. This study evaluates the performance of artificial neural network (ANN) being one of the popular computational intelligence techniques in predicting hydraulic conductivity of wide range of soil types and compared with the traditional multiple linear regression (MLR). ANN and MLR models were developed using six input variables. Results revealed that only three input variables were statistically significant in MLR model development. Performance evaluations of the developed models using determination coefficient and mean square error show that the prediction capability of ANN is far better than MLR. In addition, comparative study with available existing models shows that the developed ANN and MLR in this study performed relatively better.


Sign in / Sign up

Export Citation Format

Share Document