scholarly journals Motivational system modulates brain responses during exploratory decision-making

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chia-Wei Li ◽  
Carol Yeh-Yun Lin ◽  
Ting-Ting Chang ◽  
Nai-Shing Yen ◽  
Danchi Tan

AbstractManagers face risk in explorative decision-making and those who are better at such decisions can achieve future viability. To understand what makes a manager effective at explorative decision-making requires an analysis of the manager’s motivational characteristics. The behavioral activation/inhibition system (BAS/BIS), fitting the motivational orientation of “approach” or “avoidance,” can affect individual decision-making. However, very little is known about the neural correlates of BAS/BIS orientation and their interrelationship with the mental activity during explorative decision-making. We conducted an fMRI study on 111 potential managers to investigate how the brain responses of explorative decision-making interact with BAS/BIS. Participants were separated into high- and low-performance groups based on the median exploration-score. The low-performance group showed significantly higher BAS than that of the high-performance group, and its BAS had significant negative association with neural networks related to reward-seeking during explorative decision-making. Moreover, the BIS of the low-performance group was negatively correlated with the activation of cerebral regions responding to risk-choice during explorative decision-making. Our finding showed that BAS/BIS was associated with the brain activation during explorative decision-making only in the low-performance group. This study contributed to the understanding of the micro-foundations of strategically relevant decision-making and has an implication for management development.

2011 ◽  
Vol 25 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Ivo Van den Berg ◽  
Ingmar H. A. Franken ◽  
Peter Muris

Reward, such as monetary gain, and punishment, such as monetary loss, are capable of modifying the electrophysiological signals of the brain. Further, it is known that there are individual differences in the sensitivity for reward and punishment. This study set out to test the relationship between self-reported sensitivity to reward and sensitivity to punishment and electrophysiological brain responses to monetary gains and losses. Subjects filled out the modified Behavioral Inhibition System/Behavioral Activation System scales for measuring responsiveness to reward (RR) and responsiveness to punishment (RP), and performed a gambling task. The results showed that there was a significant positive correlation between scores on the RR scale and P3 amplitudes on the Fz electrode location to win, loss, and break even outcomes. There was no significant correlation, however, between scores on the RP scale and the P3 amplitudes to all outcomes. For the feedback-related negativity, no significant correlations with both the RR and RP scales were present. Thus individuals scoring high on RR seem to be generally more sensitive to outcomes (either positive or negative) during a task where they might receive a reward.


2006 ◽  
Vol 49 (3) ◽  
pp. 259-268 ◽  
Author(s):  
B. Buske ◽  
I. Sternstein ◽  
M. Reissmann ◽  
P. Reinecke ◽  
G. Brockmann

Abstract. The aim of this study was to investigate, if special genotypes of the genes glutathione peroxidase 5 (GPX5), fucosyltransferase 1 (FUT1) and estrogen receptor 2 (ESR2) are associated with litter size in a commercial pig cross population. For this purpose, a total of 123 F2 sows were divided into two extreme performance groups, one with a high litter size (n = 61, ≥ 14.3 piglets per litter) and one with a low litter size (n = 62, ≤ 11.3 piglets per litter) and genotyped using PCR-RFLP methods. The Chi-square test was used in order to investigate, if a special genotype occurs significantly more often in one of the two performance groups (p < 0.05). Whereas no association was found between different ESR2 or GPX5 genotypes with one of the two performance groups, the number of sows with AB genotypes at the FUT1 gene was significantly increased in the high performance group in comparison to the low performance group.


2019 ◽  
Vol 25 (5) ◽  
pp. 475-490 ◽  
Author(s):  
Ian J. Bamford ◽  
Nigel S. Bamford

The striatum is a critical component of the brain that controls motor, reward, and executive function. This ancient and phylogenetically conserved structure forms a central hub where rapid instinctive, reflexive movements and behaviors in response to sensory stimulation or the retrieval of emotional memory intersect with slower planned motor movements and rational behaviors. This review emphasizes two distinct pathways that begin in the thalamus and converge in the striatum to differentially affect movements, behaviors, and decision making. The convergence of excitatory glutamatergic activity from the thalamus and cortex, along with dopamine release in response to novel stimulation, provide the basis for motor learning, reward seeking, and habit formation. We outline how the rules derived through research on neural pathways may enhance the predictability of reflexive actions and rational responses studied in behavioral economics.


1997 ◽  
Vol 29 (3) ◽  
pp. 363-395 ◽  
Author(s):  
Michele L. Simpson ◽  
Sherrie L. Nist

The purpose of this case study was to generate a description of the elements that supported students' performance in a university history course. Throughout the study, the researchers were guided by a phenomen-ographic theoretical framework. Taking the role of observers, the researchers collected data over a 10-week period in the form of lecture notes, fieldnotes, and documents. In addition, multiple interviews from both the history professor and the 10 informants, who were chosen in a purposive manner, were transcribed. Data were subjected to a qualitative content analysis. Three categories that emerged as salient were students' belief systems, students' strategic knowledge, and students' ability to be flexible. Informants differed on these beliefs depending on whether they were in the high-performance, low-performance, or improved-performance group. One of the major conclusions drawn from this case study was that students who were flexible in their belief systems about learning and history, perceptions of task, and strategic approaches were the ones who succeeded in the course. In addition, students who performed better in the course shared the professor's perceptions of learning and task.


2018 ◽  
Vol 15 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Guiyun Cao ◽  
Suqiao Han ◽  
Keke Li ◽  
Li Shen ◽  
Xiaohong Wang ◽  
...  

Background: Ferruginol (FRGN) exhibits a broad range of pharmacological properties which make it a promising candidate for chemoprevention. However, little is known about its absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Methods: A rapid, sensitive and specific HPLC-DAD method was established to quantify FRGN in the plasma and tissues of Wistar rats. After extraction of FRGN with ethyl acetate (EtOAc), chromatographic separation was performed on a YMC ODS C18 column (250 × 4.6 mm I.D., 5 µm) with a mobile phase consisting of methanol-water (92:8, v/v) at a flow rate of 0.9 mL/min. Detection was conducted with a wavelength of 273 nm at 25 °C. Results: The calibration curves for FRGN were linear in the concentration range of 0.5-20 µg/mL for plasma, 0.5-10 µg/mL for heart, liver, spleen, lung, kidney, stomach, intestine, brain and muscle. After three cycles of freezing and thawing, the concentration variations were within ± 7% of nominal concentrations, indicating no significant substance loss during repeated thawing and freezing. The assay was applied to pharmacokinetic and tissue distribution study in rats. Results suggested that lung, heart, liver, spleen and kidney were the major distribution tissues of FRGN in rats, and FRGN could permeate the blood-brain barrier to distribute in the brain of rats. Conclusion: The information provided by this research is very useful for gaining knowledge of the pharmacokinetic process and tissue distribution of FRGN.


Author(s):  
Anil K. Seth

Consciousness is perhaps the most familiar aspect of our existence, yet we still do not know its biological basis. This chapter outlines a biomimetic approach to consciousness science, identifying three principles linking properties of conscious experience to potential biological mechanisms. First, conscious experiences generate large quantities of information in virtue of being simultaneously integrated and differentiated. Second, the brain continuously generates predictions about the world and self, which account for the specific content of conscious scenes. Third, the conscious self depends on active inference of self-related signals at multiple levels. Research following these principles helps move from establishing correlations between brain responses and consciousness towards explanations which account for phenomenological properties—addressing what can be called the “real problem” of consciousness. The picture that emerges is one in which consciousness, mind, and life, are tightly bound together—with implications for any possible future “conscious machines.”


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Changpeng Wang ◽  
Siwei Zhang ◽  
Yuefei Zou ◽  
Hongzhao Ma ◽  
Donglang Jiang ◽  
...  

Abstract Background Some neuropsychological diseases are associated with abnormal thiamine metabolism, including Korsakoff–Wernicke syndrome and Alzheimer’s disease. However, in vivo detection of the status of brain thiamine metabolism is still unavailable and needs to be developed. Methods A novel PET tracer of 18F-deoxy-thiamine was synthesized using an automated module via a two-step route. The main quality control parameters, such as specific activity and radiochemical purity, were evaluated by high-performance liquid chromatography (HPLC). Radiochemical concentration was determined by radioactivity calibrator. Metabolic kinetics and the level of 18F-deoxy-thiamine in brains of mice and marmosets were studied by micro-positron emission tomography/computed tomography (PET/CT). In vivo stability, renal excretion rate, and biodistribution of 18F-deoxy-thiamine in the mice were assayed using HPLC and γ-counter, respectively. Also, the correlation between the retention of cerebral 18F-deoxy-thiamine in 60 min after injection as represented by the area under the curve (AUC) and blood thiamine levels was investigated. Results The 18F-deoxy-thiamine was stable both in vitro and in vivo. The uptake and clearance of 18F-deoxy-thiamine were quick in the mice. It reached the max standard uptake value (SUVmax) of 4.61 ± 0.53 in the liver within 1 min, 18.67 ± 7.04 in the kidney within half a minute. The SUV dropped to 0.72 ± 0.05 and 0.77 ± 0.35 after 60 min of injection in the liver and kidney, respectively. After injection, kidney, liver, and pancreas exhibited high accumulation level of 18F-deoxy-thiamine, while brain, muscle, fat, and gonad showed low accumulation concentration, consistent with previous reports on thiamine distribution in mice. Within 90 min after injection, the level of 18F-deoxy-thiamine in the brain of C57BL/6 mice with thiamine deficiency (TD) was 1.9 times higher than that in control mice, and was 3.1 times higher in ICR mice with TD than that in control mice. The AUC of the tracer in the brain of marmosets within 60 min was 29.33 ± 5.15 and negatively correlated with blood thiamine diphosphate levels (r = − 0.985, p = 0.015). Conclusion The 18F-deoxy-thiamine meets the requirements for ideal PET tracer for in vivo detecting the status of cerebral thiamine metabolism.


2021 ◽  
pp. 107385842110039
Author(s):  
Kristin F. Phillips ◽  
Harald Sontheimer

Once strictly the domain of medical and graduate education, neuroscience has made its way into the undergraduate curriculum with over 230 colleges and universities now offering a bachelor’s degree in neuroscience. The disciplinary focus on the brain teaches students to apply science to the understanding of human behavior, human interactions, sensation, emotions, and decision making. In this article, we encourage new and existing undergraduate neuroscience programs to envision neuroscience as a broad discipline with the potential to develop competencies suitable for a variety of careers that reach well beyond research and medicine. This article describes our philosophy and illustrates a broad-based undergraduate degree in neuroscience implemented at a major state university, Virginia Tech. We highlight the fact that the research-centered Experimental Neuroscience major is least popular of our four distinct majors, which underscores our philosophy that undergraduate neuroscience can cater to a different audience than traditionally thought.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1616
Author(s):  
Nicoletta di Leo ◽  
Stefania Moscato ◽  
Marco Borso' ◽  
Simona Sestito ◽  
Beatrice Polini ◽  
...  

Recent reports highlighted the significant neuroprotective effects of thyronamines (TAMs), a class of endogenous thyroid hormone derivatives. In particular, 3-iodothyronamine (T1AM) has been shown to play a pleiotropic role in neurodegeneration by modulating energy metabolism and neurological functions in mice. However, the pharmacological response to T1AM might be influenced by tissue metabolism, which is known to convert T1AM into its catabolite 3-iodothyroacetic acid (TA1). Currently, several research groups are investigating the pharmacological effects of T1AM systemic administration in the search of novel therapeutic approaches for the treatment of interlinked pathologies, such as metabolic and neurodegenerative diseases (NDDs). A critical aspect in the development of new drugs for NDDs is to know their distribution in the brain, which is fundamentally related to their ability to cross the blood–brain barrier (BBB). To this end, in the present study we used the immortalized mouse brain endothelial cell line bEnd.3 to develop an in vitro model of BBB and evaluate T1AM and TA1 permeability. Both drugs, administered at 1 µM dose, were assayed by high-performance liquid chromatography coupled to mass spectrometry. Our results indicate that T1AM is able to efficiently cross the BBB, whereas TA1 is almost completely devoid of this property.


Sign in / Sign up

Export Citation Format

Share Document