scholarly journals Development of robust isothermal RNA amplification assay for lab-free testing of RNA viruses

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Radhika Biyani ◽  
Kirti Sharma ◽  
Kenji Kojima ◽  
Madhu Biyani ◽  
Vishnu Sharma ◽  
...  

AbstractSimple tests of infectiousness that return results in minutes and directly from samples even with low viral loads could be a potential game-changer in the fight against COVID-19. Here, we describe an improved isothermal nucleic acid amplification assay, termed the RICCA (RNA Isothermal Co-assisted and Coupled Amplification) reaction, that consists of a simple one-pot format of ‘sample-in and result-out’ with a primary focus on the detection of low copy numbers of RNA virus directly from saliva without the need for laboratory processing. We demonstrate our assay by detecting 16S rRNA directly from E. coli cells with a sensitivity as low as 8 CFU/μL and RNA fragments from a synthetic template of SARS-CoV-2 with a sensitivity as low as 1740 copies/μL. We further demonstrate the applicability of our assay for real-time testing at the point of care by designing a closed format for paper-based lateral flow assay and detecting heat-inactivated SARS-COV-2 virus in human saliva at concentrations ranging from 28,000 to 2.8 copies/μL with a total assay time of 15–30 min.

Author(s):  
Sanchita Bhadra ◽  
Timothy E. Riedel ◽  
Simren Lakhotia ◽  
Nicholas D. Tran ◽  
Andrew D. Ellington

ABSTRACTIsothermal nucleic acid amplification tests (iNAT), such as loop-mediated isothermal amplification (LAMP), are good alternatives to polymerase chain reaction (PCR)-based amplification assays, especially for point-of-care and low resource use, in part because they can be carried out with relatively simple instrumentation. However, iNATs can generate spurious amplicons, especially in the absence of target sequences, resulting in false positive results. This is especially true if signals are based on non-sequence-specific probes, such as intercalating dyes or pH changes. In addition, pathogens often prove to be moving, evolving targets, and can accumulate mutations that will lead to inefficient primer binding and thus false negative results. Internally redundant assays targeting different regions of the target sequence can help to reduce such false negatives. Here we describe rapid conversion of three previously described SARS-CoV-2 LAMP assays that relied on non-sequence-specific readout into assays that can be visually read using sequence-specific fluorogenic oligonucleotide strand exchange (OSD) probes. We evaluate one-pot operation of both individual and multiplex LAMP-OSD assays and demonstrate detection of SARS-CoV-2 virions in crude human saliva.


2020 ◽  
Vol 14 (S 01) ◽  
pp. S123-S129 ◽  
Author(s):  
Hiba Hamid ◽  
Zohaib Khurshid ◽  
Necdet Adanir ◽  
Muhammad S. Zafar ◽  
Sana Zohaib

AbstractNovel coronavirus disease 2019 (COVID-19) outbreak has termed as a controllable pandemic, and the entire world has come to a standstill trying to mitigate the disease with health systems. Health care providers, around the globe, are fighting day and night. Currently, rapid testing is taking place with the help of nasopharyngeal, oropharyngeal swab, bronchoalveolar lavage, sputum, urine, and blood. All these approaches are invasive or embarrassing to the infected person. It is observed that salivary glands are hosting severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) because of angiotensin-converting enzyme 2 and the detection of high viral loads in the saliva and is playing a crucial role in virus transmission, especially from individuals showing absolutely no symptoms. Saliva is proving to be a promising noninvasive sample specimen for the diagnosis of COVID-19, thus helping to monitor the infection and prevent it from further spreading by prompt isolation.


2018 ◽  
Author(s):  
Sanchita Bhadra ◽  
Miguel A. Saldaña ◽  
Hannah Grace Han ◽  
Grant L. Hughes ◽  
Andrew D. Ellington

AbstractWe have developed a generalizable ‘smart molecular diagnostic’ capable of accurate point-of-care (POC) detection of variable nucleic acid targets. Our one-pot isothermal assay relies on multiplex execution of four loop-mediated isothermal amplification reactions, with primers that are degenerate and redundant, thereby increasing the breadth of targets while reducing the probability of amplification failure. An easy-to-read visual answer is computed directly by a multi-input Boolean OR gate signal transducer that uses degenerate strand exchange probes to assess any combination of amplicons. We demonstrate our platform by using the same assay to detect divergent Asian and African lineages of the evolving Zika virus (ZIKV), while maintaining selectivity against non-target viruses. Direct analysis of biological specimens proved possible, with 20 virions / µl being directly detected in human saliva within 90 minutes, and crudely macerated ZIKV-infected Aedes aegypti mosquitoes being identified with 100% specificity and sensitivity. The ease-of-use with minimal instrumentation, broad programmability, and built-in fail-safe reliability make our smart molecular diagnostic attractive for POC use.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2071
Author(s):  
Marcello Lanari ◽  
Giovanni Battista Biserni ◽  
Matteo Pavoni ◽  
Eva Caterina Borgatti ◽  
Marta Leone ◽  
...  

The gold standard for diagnosis of SARS-CoV-2 infection has been nucleic acid amplification tests (NAAT). However, rapid antigen detection kits (Ag-RDTs), may offer advantages over NAAT in mass screening, generating results in minutes, both as laboratory-based test or point-of-care (POC) use for clinicians, at a lower cost. We assessed two different POC Ag-RDTs in mass screening versus NAAT for SARS-CoV-2 in a cohort of pediatric patients admitted to the Pediatric Emergency Unit of IRCCS—Polyclinic of Sant’Orsola, Bologna (from November 2020 to April 2021). All patients were screened with nasopharyngeal swabs for the detection of SARS-CoV-2-RNA and for antigen tests. Results were obtained from 1146 patients. The COVID-19 Ag FIA kit showed a baseline sensitivity of 53.8% (CI 35.4–71.4%), baseline specificity 99.7% (CI 98.4–100%) and overall accuracy of 80% (95% CI 0.68–0.91); the AFIAS COVID-19 Ag kit, baseline sensitivity of 86.4% (CI 75.0–93.9%), baseline specificity 98.3% (CI 97.1–99.1%) and overall accuracy of 95.3% (95% CI 0.92–0.99). In both tests, some samples showed very low viral load and negative Ag-RDT. This disagreement may reflect the positive inability of Ag-RDTs of detecting antigen in late phase of infection. Among all cases with positive molecular test and negative antigen test, none showed viral loads > 106 copies/mL. Finally, we found one false Ag-RDTs negative result (low cycle thresholds; 9 × 105 copies/mL). Our results suggest that both Ag-RDTs showed good performances in detection of high viral load samples, making it a feasible and effective tool for mass screening in actively infected children.


Author(s):  
Jonathan Nyebuchi ◽  
Emeji, Roseline ◽  
Konne Felix Eedee

Coronaviruses are a group of related RNA viruses that cause disease in mammals and birds. Covid-19 infection occurs due to an RNA virus which is single-stranded, called SARS-CoV-2; this virus is similar to SARS-CoV. This review throws light on the available laboratory techniques used for testing coronavirus. Certain challenges are encountered during the development of a diagnostic test for a novel pathogen, which depends on sensitivity of the method, that is, the potential in detecting very low pathogen level for early laboratory diagnosis, produce little or no interference with other strains of the virus, and produce results rapidly. Since the time of incubation and clinical manifestation of the infection are relatively the same with SARS, the widespread and effect of COVID-19 globally serve as the basis why the development of quick and reliable laboratory methods are necessary. Samples that could be collected for covid-19 testing includes blood (especially for screening purpose), nasal and throat swab. Currently, the gold standard method for laboratory diagnosis of Covid-19 infection is RT-PCR, which serves as a confirmatory method for Covid-19 testing. EIA and SVN laboratory techniques are other techniques used in detecting the viral infection. In addition, Rapid Diagnostic Testing (RDT) are currently developed for point-of-care testing, and often used as a screening method of Covid-19 infections. Early detection of the virus remains the primary focus for the treatment and control of SARS-CoV-2 infections. Therefore, this review was aimed at the available laboratory methods used in the diagnosis for coronavirus infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mateus Nóbrega Aoki ◽  
Bruna de Oliveira Coelho ◽  
Luiz Gustavo Bentim Góes ◽  
Paola Minoprio ◽  
Edison Luiz Durigon ◽  
...  

AbstractThe use of RT-LAMP (reverse transcriptase—loop mediated isothermal amplification) has been considered as a promising point-of-care method to diagnose COVID-19. In this manuscript we show that the RT-LAMP reaction has a sensitivity of only 200 RNA virus copies, with a color change from pink to yellow occurring in 100% of the 62 clinical samples tested positive by RT-qPCR. We also demonstrated that this reaction is 100% specific for SARS-CoV-2 after testing 57 clinical samples infected with dozens of different respiratory viruses and 74 individuals without any viral infection. Although the majority of manuscripts recently published using this technique describe only the presence of two-color states (pink = negative and yellow = positive), we verified by naked-eye and absorbance measurements that there is an evident third color cluster (orange), in general related to positive samples with low viral loads, but which cannot be defined as positive or negative by the naked eye. Orange colors should be repeated or tested by RT-qPCR to avoid a false diagnostic. RT-LAMP is therefore very reliable for samples with a RT-qPCR Ct < 30 being as sensitive and specific as a RT-qPCR test. All reactions were performed in 30 min at 65 °C. The use of reaction time longer than 30 min is also not recommended since nonspecific amplifications may cause false positives.


Sexual Health ◽  
2019 ◽  
Vol 16 (4) ◽  
pp. 314 ◽  
Author(s):  
Claire C. Bristow ◽  
Sheldon R. Morris ◽  
Susan J. Little ◽  
Sanjay R. Mehta ◽  
Jeffrey D. Klausner

Background Most studies evaluating extragenital testing performance for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) detection by the Xpert® CT/NG show high per cent agreement with comparison assays; however, the precision around positive per cent agreement is low and thus the values that have been reported are not highly informative. Therefore, a systematic review was conducted and data from five studies were combined to better assess positive per cent agreement. Methods: The literature indexed on PubMed.gov was searched. Included studies were those that were an evaluation of the Xpert CT/NG assay with rectal and/or pharyngeal specimen types compared with another nucleic acid amplification test (NAAT), the Aptima transcription mediated amplification assay. A full Bayesian method was used for bivariate fixed-effect meta-analysis of positive and negative per cent agreement and pooled estimates (and 95% confidence intervals (CI)) were presented for each. Results: The pooled positive and negative per cent agreement for detection of CT in rectal specimens was 89.72% (95% CI: 84.97%, 93.64%) and 99.23% (95% CI: 98.74%, 99.60%), and in pharyngeal specimens, they were 89.96% (95% CI: 66.38%, 99.72%) and 99.62% (95% CI: 98.95%, 99.95%) respectively. For NG detection in rectal specimens, the pooled positive and negative per cent agreement was 92.75% (95% CI: 87.91%, 96.46%) and 99.75% (95% CI: 99.46%, 99.93%), and in pharyngeal specimens, they were 92.51% (95% CI: 85.84%, 97.18%) and 98.56% (95% CI: 97.69%, 99.23%) respectively. Conclusions: It was found that the Xpert CT/NG assay performed similarly to the Aptima transcription mediated amplification assay for the detection of CT and NG in extragenital specimens. The Xpert assay has the benefit of providing faster results at the point-of-care, thus reducing the turnaround time for results, potentially enabling same-day treatment.


2021 ◽  
Author(s):  
Frank X. Liu ◽  
Johnson Q. Cui ◽  
Hojeong Park ◽  
Ka Wai Chan ◽  
Tyler Leung ◽  
...  

AbstractThe isothermal molecular diagnosis with CRISPR has attracted particular interest for the sensitive, specific detection of nucleic acids. However, most of the assays with Cas enzymes were performed in bulk assays using multistep approaches and hard to realize quantitative detection. Herein, we report Microfluidics-Enabled Digital Isothermal Cas13a Assay (MEDICA), a digital format of SHERLOCK with enhanced robustness and sensitivity. We first address the macromolecular crowding problems when combining the recombinase polymerase amplification (RPA) and Cas13a detection into a one-pot SHERLOCK assay. After the assay optimization, the enhanced one-pot SHERLOCK (E-SHERLOCK) achieves high robustness and 200-fold increased sensitivity. Leveraging droplet microfluidics, we streamline the E-SHERLOCK to eliminate undesired input targets caused by pre-amplification before partition, enabling background-free absolute quantification. From the real-time monitoring, MEDICA enables qualitative detection within 10 min and absolute quantification within 25 min. For the proof of concept, we applied MEDICA to quantify HPV 16 and 18 viral loads in 44 clinical samples, indicating perfect accordance with qPCR results. MEDICA highlights the CRISPR-based isothermal assays are promising for the next generation of point-of-care diagnostics.


2021 ◽  
Vol 8 (7) ◽  
pp. 98
Author(s):  
Ernst Emmanuel Etienne ◽  
Bharath Babu Nunna ◽  
Niladri Talukder ◽  
Yudong Wang ◽  
Eon Soo Lee

COVID-19, also known as SARS-CoV-2 is a novel, respiratory virus currently plaguing humanity. Genetically, at its core, it is a single-strand positive-sense RNA virus. It is a beta-type Coronavirus and is distinct in its structure and binding mechanism compared to other types of coronaviruses. Testing for the virus remains a challenge due to the small market available for at-home detection. Currently, there are three main types of tests for biomarker detection: viral, antigen and antibody. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) remains the gold standard for viral testing. However, the lack of quantitative detection and turnaround time for results are drawbacks. This manuscript focuses on recent advances in COVID-19 detection that have lower limits of detection and faster response times than RT-PCR testing. The advancements in sensing platforms have amplified the detection levels and provided real-time results for SARS-CoV-2 spike protein detection with limits as low as 1 fg/mL in the Graphene Field Effect Transistor (FET) sensor. Additionally, using multiple biomarkers, detection levels can achieve a specificity and sensitivity level comparable to that of PCR testing. Proper biomarker selection coupled with nano sensing detection platforms are key in the widespread use of Point of Care (POC) diagnosis in COVID-19 detection.


Sign in / Sign up

Export Citation Format

Share Document