scholarly journals Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kelsey K. Graham ◽  
Meghan O. Milbrath ◽  
Yajun Zhang ◽  
Annuet Soehnlen ◽  
Nicolas Baert ◽  
...  

AbstractBees are critical for crop pollination, but there is limited information on levels and sources of pesticide exposure in commercial agriculture. We collected pollen from foraging honey bees and bumble bees returning to colonies placed in blooming blueberry fields with different management approaches (conventional, organic, unmanaged) and located across different landscape settings to determine how these factors affect pesticide exposure. We also identified the pollen and analyzed whether pesticide exposure was correlated with corbicular load composition. Across 188 samples collected in 2 years, we detected 80 of the 259 pesticide active ingredients (AIs) screened for using a modified QuEChERS method. Detections included 28 fungicides, 26 insecticides, and 21 herbicides. All samples contained pesticides (mean = 22 AIs per pollen sample), with pollen collected from bees on conventional fields having significantly higher average concentrations (2019 mean = 882.0 ppb) than those on unmanaged fields (2019 mean = 279.6 ppb). Pollen collected by honey bees had more AIs than pollen collected by bumble bees (mean = 35 vs. 19 AIs detected at each farm, respectively), whereas samples from bumble bees had higher average concentrations, likely reflecting differences in foraging behavior. Blueberry pollen was more common in pollen samples collected by bumble bees (25.9% per sample) than honey bees (1.8%), though pesticide concentrations were only correlated with blueberry pollen for honey bees. Pollen collected at farms with more blueberry in the surrounding landscape had higher pesticide concentrations, mostly AIs applied for control of blueberry pathogens and pests during bloom. However, for honey bees, the majority of AIs detected at each farm are not registered for use on blueberry at any time (55.2% of AIs detected), including several highly toxic insecticides. These AIs therefore came from outside the fields and farms they are expected to pollinate. For bumble bees, the majority of AIs detected in their pollen are registered for use on blueberry during bloom (56.9% of AIs detected), though far fewer AIs were sprayed at the focal farm (16.7%). Our results highlight the need for integrated farm and landscape-scale stewardship of pesticides to reduce exposure to pollinators during crop pollination.

Insects ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 13 ◽  
Author(s):  
Nancy Ostiguy ◽  
Frank A. Drummond ◽  
Kate Aronstein ◽  
Brian Eitzer ◽  
James D. Ellis ◽  
...  

Pollinators, including honey bees, are responsible for the successful reproduction of more than 87% of flowering plant species: they are thus vital to ecosystem health and agricultural services world-wide. To investigate honey bee exposure to pesticides, 168 pollen samples and 142 wax comb samples were collected from colonies within six stationary apiaries in six U.S. states. These samples were analyzed for evidence of pesticides. Samples were taken bi-weekly when each colony was active. Each apiary included thirty colonies, of which five randomly chosen colonies in each apiary were sampled for pollen. The pollen samples were separately pooled by apiary. There were a total of 714 detections in the collected pollen and 1008 detections in collected wax. A total of 91 different compounds were detected: of these, 79 different pesticides and metabolites were observed in the pollen and 56 were observed in the wax. In all years, insecticides were detected more frequently than were fungicides or herbicides: one third of the detected pesticides were found only in pollen. The mean (standard deviation (SD)) number of detections per pooled pollen sample varied by location from 1.1 (1.1) to 8.7 (2.1). Ten different modes of action were found across all four years and nine additional modes of action occurred in only one year. If synergy in toxicological response is a function of simultaneous occurrence of multiple distinct modes of action, then a high frequency of potential synergies was found in pollen and wax-comb samples. Because only pooled pollen samples were obtained from each apiary, and these from only five colonies per apiary per year, more data are needed to adequately evaluate the differences in pesticide exposure risk to honey bees among colonies in the same apiary and by year and location.


2018 ◽  
Vol 48 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Angela E Gradish ◽  
Jozef van der Steen ◽  
Cynthia D Scott-Dupree ◽  
Ana R Cabrera ◽  
G Christopher Cutler ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 8710
Author(s):  
Yuchao Zhang ◽  
Steven Loiselle ◽  
Yimo Zhang ◽  
Qian Wang ◽  
Xia Sun ◽  
...  

The largest blue-green infrastructures in industrialized, urbanized and developed regions in China are often multiuse wetlands, located just outside growing urban centers. These areas have multiple development pressures while providing environmental, economic, and social benefits to the local and regional populations. Given the limited information available about the tradeoffs in ecosystem services with respect to competing wetland uses, wetland managers and provincial decision makers face challenges in regulating the use of these important landscapes. In the present study, measurements made by citizen scientists were used to support a comparative study of water quality and wetland functions in two large multiuse wetlands, comparing areas of natural wetland vegetation, tourism-based wetland management and wetland agriculture. The study sites, the Nansha and Tianfu wetlands, are located in two of the most urbanized areas of China: the lower Yangtze River and Pearl River catchments, respectively. Our results indicated that the capacity of wetlands to mitigate water quality is closely related to the quality of the surrounding waters and hydrological conditions. Agricultural areas in both wetlands provided the lowest sediment and nutrient retention. The results show that the delivery of supporting ecosystem services is strongly influenced by the location and use of the wetland. Furthermore, we show that citizen scientist-acquired data can provide fundamental information on quantifying these ecosystem services, providing needed information to wetland park managers and provincial wetland administrators.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Mertes ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz

AbstractSociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule’s chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.


Behaviour ◽  
1995 ◽  
Vol 132 (1-2) ◽  
pp. 87-93 ◽  
Author(s):  
C.M.S. Plowright ◽  
Y.G. Korneluk

AbstractBumble bees (Bombus impatiens) were trained to discriminate between a rewarding and non-rewarding artificial flower that differed only in their configuration of four identical petals. On choice tests between 2 empty flowers, the bees chose the flower with the configuration of the rewarding flower over the mirror image, but the mirror image over a novel flower. This behaviour is the same as has been observed with honey bees and functional interpretations are considered. The problem of distinguishing between left-right pattern reversals and true mirror image transformations is discussed.


Author(s):  
Neeta Baporikar

Decisions can make or mar an organization. Decision-making is a multifaceted and intricate process. This process becomes even more complicated and complex when it comes to organizations, especially in this competitive world. Today, decisions are made not only under uncertainty, with available and/or limited information, but may also be made in a virtual setting. Decision makers may not be engaged in face-to-face deliberations. Hence, understanding the challenges, complexity, and rewards of the use of technology, especially information technology in managerial decision-making, is important. Such an understanding is not only vital in determining the efficacy of managers and their organizations, but also significant in designing future management approaches and organizations. This is the core objective of this chapter.


1959 ◽  
Vol 39 (4) ◽  
pp. 505-511 ◽  
Author(s):  
P. Pankiw ◽  
C. R. Elliott

Pollination studies involving zero, one and three colonies of honey bees per acre, on commercial alsike clover fields ranging in size from 15 to 75 acres, were conducted in 1954, 1955, and 1957 in the Hinton Trail district of the Peace River Region of Alberta. These studies indicated that in large fields one colony of honey bees per acre is sufficient to pollinate alsike clover, consideration being given to competition of other crops and to the climatic conditions. The influence of competing crops was such that 65- to 75-acre fields, with one colony per acre, were similar in honey bee populations and seed production to 15- to 20-acre fields with three colonies per acre. Competing plant species accounted for 15 to 36 per cent of the pollen collected by honey bees. Fields with the higher populations of pollinators matured earlier than fields deficient in pollinators. A population of 3400 honey bees per acre (0.7 bee per sq. yd.) throughout the flowering period resulted in seed sets up to 82 per cent and seed yields to 375 lb. per acre. Check fields, where no honey bees were supplied, ranged in production from 29 lb. per acre, with a low native pollinator count, to 293 lb. where a pollinator equivalent of 1300 bumble bees per acre was observed. Bumble bees worked alsike clover at the rate of 28.6 florets per minute, as compared to 20.0 for leaf-cutter bees and 18.7 for honey bees.


2020 ◽  
Vol 113 (3) ◽  
pp. 1055-1061 ◽  
Author(s):  
Laura Šimenc ◽  
Urška Kuhar ◽  
Urška Jamnikar-Ciglenečki ◽  
Ivan Toplak

Abstract The complete genome of Lake Sinai virus 3 (LSV3) was sequenced by the Ion Torrent next-generation sequencing (NGS) technology from an archive sample of honey bees collected in 2010. This strain M92/2010 is the first complete genome sequence of LSV lineage 3. From October 2016 to December 2017, 56 honey bee samples from 32 different locations and 41 bumble bee samples from five different locations were collected. These samples were tested using a specific reverse transcriptase-polymerase chain reaction (RT-PCR) method; 75.92% of honey bee samples and 17.07% of bumble bee samples were LSV-positive with the RT-PCR method. Phylogenetic comparison of 557-base pair-long RNA-dependent RNA polymerase (RdRp) genome region of selected 23 positive samples of honey bees and three positive bumble bee samples identified three different LSV lineages: LSV1, LSV2, and LSV3. The LSV3 lineage was confirmed for the first time in Slovenia in 2010, and the same strain was later detected in several locations within the country. The LSV strains detected in bumble bees are from 98.6 to 99.4% identical to LSV strains detected among honey bees in the same territory.


Sign in / Sign up

Export Citation Format

Share Document