scholarly journals Phosphorylation of CrkL S114 induced by common gamma chain cytokines and T-cell receptor signal transduction

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Armando Estrada ◽  
Alejandro C. Rodriguez ◽  
Georgialina Rodriguez ◽  
Alice H. Grant ◽  
Yoshira M. Ayala-Marin ◽  
...  

AbstractT-cell activation and cellular expansion by common gamma chain cytokines such as Interleukin-2 is necessary for adaptive immunity. However, when unregulated these same pathways promote pathologies ranging from autoimmune disorders to cancer. While the functional role of Interleukin-2 and downstream effector molecules is relatively clear, the repertoire of phosphoregulatory proteins downstream of this pathway is incomplete. To identify phosphoproteins downstream of common gamma chain receptor, YT cells were radiolabeled with [32P]-orthophosphate and stimulated with Interleukin-2. Subsequently, tyrosine phosphorylated proteins were immunopurified and subjected to tandem mass spectrometry—leading to the identification of CrkL. Phosphoamino acid analysis revealed concurrent serine phosphorylation of CrkL and was later identified as S114 by mass spectrometry analysis. S114 was inducible through stimulation with Interleukin-2 or T-cell receptor stimulation. Polyclonal antibodies were generated against CrkL phospho-S114, and used to show its inducibility by multiple stimuli. These findings confirm CrkL as an Interleukin-2 responsive protein that becomes phosphorylated at S114 by a kinase/s downstream of PI3K and MEK/ERK signaling.

2007 ◽  
Vol 204 (3) ◽  
pp. 681-691 ◽  
Author(s):  
Vincenzo Di Bartolo ◽  
Benjamin Montagne ◽  
Mogjiborahman Salek ◽  
Britta Jungwirth ◽  
Florent Carrette ◽  
...  

The SH2 domain–containing leukocyte protein of 76 kD (SLP-76) is a pivotal element of the signaling machinery controlling T cell receptor (TCR)-mediated activation. Here, we identify 14-3-3ε and ζ proteins as SLP-76 binding partners. This interaction was induced by TCR ligation and required phosphorylation of SLP-76 at serine 376. Ribonucleic acid interference and in vitro phosphorylation experiments showed that serine 376 is the target of the hematopoietic progenitor kinase 1 (HPK-1). Interestingly, either S376A mutation or HPK-1 knockdown resulted in increased TCR-induced tyrosine phosphorylation of SLP-76 and phospholipase C-γ1. Moreover, an SLP-76–S376A mutant induced higher interleukin 2 gene transcription than wild-type SLP-76. These data reveal a novel negative feedback loop involving HPK-1–dependent serine phosphorylation of SLP-76 and 14-3-3 protein recruitment, which tunes T cell activation.


2007 ◽  
Vol 27 (14) ◽  
pp. 5235-5245 ◽  
Author(s):  
Hu Zeng ◽  
Lie Di ◽  
Guoping Fu ◽  
Yuhong Chen ◽  
Xiang Gao ◽  
...  

ABSTRACT Bcl10 (B-cell lymphoma 10) is an adaptor protein comprised of an N-terminal caspase recruitment domain and a C-terminal serine/threonine-rich domain. Bcl10 plays a critical role in antigen receptor-mediated NF-κB activation and lymphocyte development and functions. Our current study has discovered that T-cell activation induced monophosphorylation and biphosphorylation of Bcl10 and has identified S138 within Bcl10 as one of the T-cell receptor-induced phosphorylation sites. Alteration of S138 to an alanine residue impaired T-cell activation-induced ubiquitination and subsequent degradation of Bcl10, ultimately resulting in prolongation of TCR-mediated NF-κB activation and enhancement of interleukin-2 production. Taken together, our findings demonstrate that phosphorylation of Bcl10 at S138 down-regulates Bcl10 protein levels and thus negatively regulates T-cell receptor-mediated NF-κB activation.


2003 ◽  
Vol 14 (2) ◽  
pp. 349-360 ◽  
Author(s):  
Shi Niu ◽  
Haichun Xie ◽  
Eugene E. Marcantonio

Integrin receptor signals are costimulatory for mitogenesis with the T-cell receptor during T-cell activation. A subset of integrin receptors can link to the adapter protein Shc and provide a mitogenic stimulus. Using a combination of genetic and pharmacological approaches, we show herein that integrin signaling to Shc in T cells requires the receptor tyrosine phosphatase CD45, the Src family kinase member Lck, and protein kinase C. Our results suggest a model in which integrin-dependent serine phosphorylation of Lck is the critical step that determines the efficiency of Shc tyrosine phosphorylation in T cells. Serine phosphorylation of Lck is dependent on PKC and is also linked to CD45 dephosphorylation. Mutants of Lck that cannot be phosphorylated on the critical serine residues do not signal efficiently to Shc and have greatly reduced kinase activity. This signaling from integrins to Lck may be an important step in the costimulation with the T-cell receptor during lymphocyte activation.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4234-4241 ◽  
Author(s):  
MB Fischer ◽  
I Hauber ◽  
H Eggenbauer ◽  
V Thon ◽  
E Vogel ◽  
...  

Common variable immunodeficiency (CVID) is characterized by an impairment of specific antibody production and a decrease in all or selected Ig isotypes. Abnormalities at the level of the B cells, T cells, and antigen-presenting cells have been described. In the present study, we have focused our attention on T-cell activation in CVID. T cells from 15 of 24 patients failed to respond to recall antigens (eg, tetanus toxoid, Escherichia coli). Of these 15 patients, 11 were studied in detail and showed significantly decreased T-cell proliferative responses and/or decreased interleukin-2 and interferon- gamma production on T-cell receptor-mediated stimulation with recall antigens and superantigens (staphylococcal enterotoxins [SE]); however, T-cell response to mitogens (anti-CD3 monoclonal antibody, phytohemagglutinin) was normal. The defect in interleukin-2 and interferon-gamma release on tetanus toxoid stimulation could also be documented in purified CD4 T cells of the patients and was present in patients with high and normal CD8 counts alike. Furthermore, patients' T cells failed to mount a significant elevation in free intracellular calcium (Ca++ flux) in response to superantigen, whereas the response to phorbol myristate acetate and ionomycin, bypassing receptor-mediated signaling, was unimpaired. These results indicate a defect in the early phase of T-cell activation after triggering of the T-cell receptor in a significant subgroup of CVID patients.


2004 ◽  
Vol 24 (10) ◽  
pp. 4581-4592 ◽  
Author(s):  
Luzhou Xing ◽  
Laura T. Donlin ◽  
Rebecca H. Miller ◽  
Konstantina Alexandropoulos

ABSTRACT Engagement of the T-cell receptor (TCR) results in the activation of a multitude of signaling events that regulate the function of T lymphocytes. These signaling events are in turn modulated by adapter molecules, which control the final functional output through the formation of multiprotein complexes. In this report, we identified the adapter molecule Sin as a new regulator of T-cell activation. We found that the expression of Sin in transgenic T lymphocytes and Jurkat T cells inhibited interleukin-2 expression and T-cell proliferation. This inhibitory effect was specific and was due to defective phospholipase C-γ (PLC-γ) phosphorylation and activation. In contrast to other adapters that become phosphorylated upon TCR stimulation, Sin was constitutively phosphorylated in resting cells by the Src kinase Fyn and bound to signaling intermediates, including PLC-γ. In stimulated cells, Sin was transiently dephosphorylated, which coincided with transient dissociation of Fyn and PLC-γ. Downregulation of Sin expression using Sin-specific short interfering RNA oligonucleotides inhibited transcriptional activation in response to TCR stimulation. Our results suggest that endogenous Sin influences T-lymphocyte signaling by sequestering signaling substrates and regulating their availability and/or activity in resting cells, while Sin is required for targeting these intermediates to the TCR for fast signal transmission during stimulation.


2001 ◽  
Vol 193 (3) ◽  
pp. 329-338 ◽  
Author(s):  
George S. Vratsanos ◽  
Sungsoo Jung ◽  
Yeong-Min Park ◽  
Joe Craft

Polyclonal CD4+ T cell activation is characteristic of spontaneous lupus. As a potential explanation for this phenotype, we hypothesized that T cells from lupus-prone mice are intrinsically hyperresponsive to stimulation with antigen, particularly to those peptide ligands having a low affinity for the T cell receptor (TCR). To test this hypothesis, we backcrossed the α and β chain genes of the AND TCR specific for amino acids 88–104 of pigeon cytochrome C (PCC) to the Fas-intact MRL/Mp+Fas-lpr and to the H-2k–matched control backgrounds B10.BR and CBA/CaJ (MRL.AND, B10.AND, and CBA.AND, respectively), and assessed naive CD4+ TCR transgenic T cell activation in vitro after its encounter with cognate antigen and lower affinity altered peptide ligands (APLs). MRL.AND T cells, compared with control B10.AND and CBA.AND cells, proliferated more when stimulated with agonist antigen. More strikingly, MRL.AND T cells proliferated significantly more and produced more interleukin 2 when stimulated with the APLs of PCC 88–104, having lower affinity for the transgenic TCR. These results imply that one of the forces driving polyclonal activation of α/β T cells in lupus is an intrinsically heightened response to peptide antigen, particularly those with low affinity for the TCR, independent of the nature of the antigen-presenting cell and degree of costimulation.


2007 ◽  
Vol 75 (8) ◽  
pp. 4040-4049 ◽  
Author(s):  
Olivia D. Schneider ◽  
Alison A. Weiss ◽  
William E. Miller

ABSTRACT Pertussis toxin (PTx) is an AB5 toxin produced by the human pathogen Bordetella pertussis. Previous work demonstrates that the five binding (B) subunits of PTx can have profound effects on T lymphocytes independent of the enzymatic activity of the A subunit. Stimulation of T cells with holotoxin (PTx) or the B subunit alone (PTxB) rapidly induces signaling events resulting in inositol phosphate accumulation, Ca2+ mobilization, interleukin-2 (IL-2) production, and mitogenic cell growth. Although previous reports suggest the presence of PTx signaling receptors expressed on T cells, to date, the receptor(s) and membrane proximal signaling events utilized by PTx remain unknown. Here we genetically and biochemically define the membrane proximal components utilized by PTx to initiate signal transduction in T cells. Using mutants of the Jurkat T-cell line deficient for key components of the T-cell receptor (TCR) pathway, we have compared stimulation with PTx to that of anti-CD3 monoclonal antibody (MAb), which directly interacts with and activates the TCR complex. Our genetic data in combination with biochemical analysis show that PTx (via the B subunit) activates TCR signaling similar to that of anti-CD3 MAb, including activation of key signaling intermediates such as Lck, ZAP-70, and phospholipase C-γ1. Moreover, the data indicate that costimulatory activity, as provided by CD28 ligation, is required for PTx to fully stimulate downstream indicators of T-cell activation such as IL-2 gene expression. By illuminating the signaling pathways that PTx activates in T cells, we provide a mechanistic understanding for how these signals deregulate immune system functions during B. pertussis infection.


1986 ◽  
Vol 24 (5) ◽  
pp. 304-308 ◽  
Author(s):  
Konrad Huppi ◽  
Lawrence D'Hoostelaere ◽  
Michael Kiefer ◽  
Michael Steinmetz ◽  
Evelyne Jouvin-Marche

1993 ◽  
Vol 178 (6) ◽  
pp. 2107-2113 ◽  
Author(s):  
A J da Silva ◽  
O Janssen ◽  
C E Rudd

Intracellular signaling from the T cell receptor (TCR)zeta/CD3 complex is likely to be mediated by associated protein tyrosine kinases such as p59fyn(T), ZAP-70, and the CD4:p56lck and CD8:p56lck coreceptors. The nature of the signaling cascade initiated by these kinases, their specificities, and downstream targets remain to be elucidated. The TCR-zeta/CD3:p59fyn(T) complex has previously been noted to coprecipitate a 120/130-kD doublet (p120/130). This intracellular protein of unknown identity associates directly with p59fyn(T) within the receptor complex. In this study, we have shown that this interaction with p120/130 is specifically mediated by the SH2 domain (not the fyn-SH3 domain) of p59fyn(T). Further, based on the results of in vitro kinase assays, p120/130 appears to be preferentially associated with p59fyn(T) in T cells, and not with p56lck. Antibody reprecipitation studies identified p120/130 as a previously described 130-kD substrate of pp60v-src whose function and structure is unknown. TCR-zeta/CD3 induced activation of T cells augmented the tyrosine phosphorylation of p120/130 in vivo as detected by antibody and GST:fyn-SH2 fusion proteins. p120/130 represents the first identified p59fyn(T):SH2 binding substrate in T cells, and as such is likely to play a key role in the early events of T cell activation.


Sign in / Sign up

Export Citation Format

Share Document