scholarly journals Mean-field model of melting in superheated crystals based on a single experimentally measurable order parameter

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nikita P. Kryuchkov ◽  
Nikita A. Dmitryuk ◽  
Wei Li ◽  
Pavel V. Ovcharov ◽  
Yilong Han ◽  
...  

AbstractMelting is one of the most studied phase transitions important for atomic, molecular, colloidal, and protein systems. However, there is currently no microscopic experimentally accessible criteria that can be used to reliably track a system evolution across the transition, while providing insights into melting nucleation and melting front evolution. To address this, we developed a theoretical mean-field framework with the normalised mean-square displacement between particles in neighbouring Voronoi cells serving as the local order parameter, measurable experimentally. We tested the framework in a number of colloidal and in silico particle-resolved experiments against systems with significantly different (Brownian and Newtonian) dynamic regimes and found that it provides excellent description of system evolution across melting point. This new approach suggests a broad scope for application in diverse areas of science from materials through to biology and beyond. Consequently, the results of this work provide a new guidance for nucleation theory of melting and are of broad interest in condensed matter, chemical physics, physical chemistry, materials science, and soft matter.

2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Corrado Rainone ◽  
Pierfrancesco Urbani ◽  
Francesco Zamponi ◽  
Edan Lerner ◽  
Eran Bouchbinder

Structural glasses feature quasilocalized excitations whose frequencies \omegaω follow a universal density of states {D}(\omega)\!\sim\!\omega^4D(ω)∼ω4. Yet, the underlying physics behind this universality is not fully understood. Here we study a mean-field model of quasilocalized excitations in glasses, viewed as groups of particles embedded inside an elastic medium and described collectively as anharmonic oscillators. The oscillators, whose harmonic stiffness is taken from a rather featureless probability distribution (of upper cutoff \kappa_0κ0) in the absence of interactions, interact among themselves through random couplings (characterized by a strength JJ) and with the surrounding elastic medium (an interaction characterized by a constant force hh). We first show that the model gives rise to a gapless density of states {D}(\omega)\!=\!A_{g}\,\omega^4D(ω)=Agω4 for a broad range of model parameters, expressed in terms of the strength of the oscillators’ stabilizing anharmonicity, which plays a decisive role in the model. Then — using scaling theory and numerical simulations — we provide a complete understanding of the non-universal prefactor A_{g}(h,J,\kappa_0)Ag(h,J,κ0), of the oscillators’ interaction-induced mean square displacement and of an emerging characteristic frequency, all in terms of properly identified dimensionless quantities. In particular, we show that A_{g}(h,J,\kappa_0)Ag(h,J,κ0) is a non-monotonic function of JJ for a fixed hh, varying predominantly exponentially with -(\kappa_0 h^{2/3}\!/J^2)−(κ0h2/3/J2) in the weak interactions (small JJ) regime — reminiscent of recent observations in computer glasses — and predominantly decays as a power-law for larger JJ, in a regime where hh plays no role. We discuss the physical interpretation of the model and its possible relations to available observations in structural glasses, along with delineating some future research directions.


2017 ◽  
Vol 31 (09) ◽  
pp. 1750092 ◽  
Author(s):  
H. Yurtseven ◽  
U. Ipekoğlu ◽  
S. Ateş

Tilt angle (order parameter) and the susceptibility are calculated as a function of temperature for the [Formula: see text]–[Formula: see text] transition in quartz using a Landau phenomenological model. The tilt angle as obtained from the model is fitted to the experimental data from the literature and the temperature dependence of the tilt angle susceptibility is predicted close to the [Formula: see text]–[Formula: see text] transition in quartz. Our results show that the mean field model explains the observed behavior of the [Formula: see text]–[Formula: see text] phase transition in quartz adequately and it can be applied to some related materials.


Open Physics ◽  
2012 ◽  
Vol 10 (3) ◽  
Author(s):  
Pierre Buyl ◽  
Duccio Fanelli ◽  
Stefano Ruffo

AbstractThe out-of equilibrium dynamics of the Hamiltonian Mean Field (HMF) model is studied in presence of an externally imposed magnetic field h. Lynden-Bell’s theory of violent relaxation is revisited and shown to adequately capture the system dynamics, as revealed by direct Vlasov based numerical simulations in the limit of vanishing field. This includes the existence of an out-of-equilibrium phase transition separating magnetized and non magnetized phases. We also monitor the fluctuations in time of the magnetization, which allows us to elaborate on the choice of the correct order parameter when challenging the performance of Lynden-Bell’s theory. The presence of the field h removes the phase transition, as it happens at equilibrium. Moreover, regions with negative susceptibility are numerically found to occur, in agreement with the predictions of the theory.


2021 ◽  
Vol 48 (3) ◽  
pp. 128-129
Author(s):  
Sounak Kar ◽  
Robin Rehrmann ◽  
Arpan Mukhopadhyay ◽  
Bastian Alt ◽  
Florin Ciucu ◽  
...  

We analyze a data-processing system with n clients producing jobs which are processed in batches by m parallel servers; the system throughput critically depends on the batch size and a corresponding sub-additive speedup function that arises due to overhead amortization. In practice, throughput optimization relies on numerical searches for the optimal batch size which is computationally cumbersome. In this paper, we model this system in terms of a closed queueing network assuming certain forms of service speedup; a standard Markovian analysis yields the optimal throughput in w n4 time. Our main contribution is a mean-field model that has a unique, globally attractive stationary point, derivable in closed form. This point characterizes the asymptotic throughput as a function of the batch size that can be calculated in O(1) time. Numerical settings from a large commercial system reveal that this asymptotic optimum is accurate in practical finite regimes.


2021 ◽  
Author(s):  
Áine Byrne ◽  
James Ross ◽  
Rachel Nicks ◽  
Stephen Coombes

AbstractNeural mass models have been used since the 1970s to model the coarse-grained activity of large populations of neurons. They have proven especially fruitful for understanding brain rhythms. However, although motivated by neurobiological considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. Here we consider a simple spiking neuron network model that has recently been shown to admit an exact mean-field description for both synaptic and gap-junction interactions. The mean-field model takes a similar form to a standard neural mass model, with an additional dynamical equation to describe the evolution of within-population synchrony. As well as reviewing the origins of this next generation mass model we discuss its extension to describe an idealised spatially extended planar cortex. To emphasise the usefulness of this model for EEG/MEG modelling we show how it can be used to uncover the role of local gap-junction coupling in shaping large scale synaptic waves.


2014 ◽  
Vol 2014 (1) ◽  
pp. 13D02-0 ◽  
Author(s):  
J. N. Hu ◽  
A. Li ◽  
H. Shen ◽  
H. Toki

Sign in / Sign up

Export Citation Format

Share Document