scholarly journals Increased burrow oxygen levels trigger defensive burrow-sealing behavior by plateau zokors

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bin Chu ◽  
Yongliang Tian ◽  
Jianwei Zhou ◽  
Zhuangsheng Tang ◽  
Kechi Dong ◽  
...  

AbstractDefensive behaviors are a response to immediate and potential threats in the environment, including abiotic and biotic threats. Subterranean rodents exhibit morphological and physiological adaptions for life underground, and they will seal with mounds and additional plugs when their burrow opened. However, little is known about the factors driving this defensive behavior. In this study, we selected a subterranean rodent, plateau zokor (Myospalax fontanieri), as a species to investigate (both in the laboratory and in the field) the possible factors responsible for burrow-sealing behavior. Our results showed that: (1) In the laboratory, the burrow-sealing frequency of plateau zokor in response to five factors were as follows: oxygen (52.63%) > light (34.58%) > temperature (20.24%) > gas flow (6.48%) > sound/control (0%). Except for light, the burrow-sealing frequency in response to other factors was significantly lower than that in response to oxygen (P < 0.05). (2) Burrow-sealing behavior in response to each treatment did not differ significantly between males and females in the laboratory experiment. (3) In the field, during the animal’s active periods in both the cold and warm season, the burrow-sealing frequency under the oxygen treatment was higher than that under the light and temperature treatments. Plateau zokors were found not to be sensitive to these treatments during their inactive periods during both the cold and warm season. (4) The latency to reseal the burrow showed no obvious differences between each treatment both in the laboratory and in the field. In conclusion, the main factor that influences the burrow-sealing behavior of plateau zokors is the variation in oxygen concentration, and this defensive behavior is related to their activity rhythm.

2018 ◽  
Vol 68 (3) ◽  
pp. 289-308
Author(s):  
Zhi-fang An ◽  
Kang Zhao ◽  
Lin-na Wei ◽  
Zhi-jie Wang ◽  
Su-hua Li ◽  
...  

AbstractThe plateau zokor (Myospalax baileyi) is a specialized subterranean rodent that lives on the Qinghai-Tibet Plateau. The species has evolved a series of strategies to adapt to its hypoxic environment and hypercapnia. p53 is a tumour suppressor gene that plays a crucial role in the cellular response to hypoxia by inducing cell cycle arrest, cell apoptosis, DNA damage repair and angiogenesis. To investigate the sequence characteristics of p53 and the response to hypoxia in plateau zokor, we cloned the p53 coding DNA sequence, analysed it, and measured the expression level of p53 at different altitudes in plateau zokor and rats. Our results show that the coding DNA sequence is 1179 bp, consisting of 392 amino acid residues. Compared to human p53, the subterranean rodents have two mutation sites in common with the human hotspots in the DNA-binding domain. Compared to subterranean rodents, plateau zokor have a mutation at residue 309. In addition, subterranean rodents have two convergent sites at residues 78 and 84. The expression levels of p53 in plateau zokor tissues increase significantly from 2260 m to 3300 m, but there was no significant difference in rats at those altitudes. Our results suggest that subterranean rodents have two mutation sites in common with the human hotspots in the DNA-binding domain, the mutation of Gly309Asp is a unique mutation site of plateau zokor p53, and there are two convergent sites enhancing subterranean rodent adaptation to hypoxic conditions. In addition, p53 is sensitive to the oxygen concentration in plateau zokor, and hypoxia upregulates the levels of p53. Generally, plateau zokor use this strategy to adapt to a hypoxic environment.


Author(s):  
Valentina Brachetta ◽  
Cristian Schleich ◽  
Roxana R. Zenuto

Predation represents an important evolutionary force shaping specific adaptations. Prey organisms present behavioral adaptations that allow them to recognize, avoid and defend themselves from their predators. In addition to predation, there is a growing consensus about the role of parasitism in the structuring of biological communities. In vertebrates, the effects on hosts include changes in daily activity, feeding, mate selection, reproduction, and modifications in responses to environmental stimuli. These behavioral variations can benefit the parasite (parasitic manipulation), benefit the host, or appear as a side effect of the infection. We evaluated the influence of parasitism on the behavioral and physiological response of Ctenomys talarum (Thomas 1898) to predator cues. We found that individuals exposed to cat odors and immobilization entered less often and stayed less time in the transparent arms of elevated maze, exhibiting a preference for protected areas (anxiogenic response). Additionally, we evaluated if the presence of parasites affected antipredatory behaviors in tuco-tucos (naturally parasitized, deparasitized or inoculated with Eimeria sp.). We did not find differences among the groups as regards responses to predator cues. Therefore, while exposure to predator cues triggered a stress response, the manipulation of parasite loads did not modify homeostasis under these experimental conditions.


1997 ◽  
Vol 83 (1) ◽  
pp. 219-228 ◽  
Author(s):  
Anna S. Lijowska ◽  
Nevada W. Reed ◽  
Barbara A. Mertins Chiodini ◽  
Bradley T. Thach

Lijowska, Anna S., Nevada W. Reed, Barbara A. Mertins Chiodini, and Bradley T. Thach. Sequential arousal and airway-defensive behavior of infants in asphyxial sleep environments. J. Appl. Physiol. 83(1): 219–228, 1997.—Infants are prone to accidental asphyxiation. Therefore, we studied airway-defensive behaviors and their relationship to spontaneous arousal behavior in 41 healthy sleeping infants (2–26 wk old), using two protocols: 1) infant was rebreathing expired air, face covered by bedding material; and 2) infant was exposed to hypercarbia, face uncovered. Multiple measurements of respiratory and motor activities were recorded (video, polygraph). The infants’ response to increasing hypercarbia consisted of four highly stereotyped behaviors: sighs (augmented breaths), startles, thrashing limb movements, and full arousal (eyes open, cry). These behaviors occurred abruptly in self-limited clusters of activity and always in the same sequence: first a sigh coupled with a startle, then thrashing, then full arousal. Incomplete sequences (initial behaviors only) occurred far more frequently than the complete sequence and were variably effective in removing the bedding covering the airway. In both protocols, as inspired CO2increased, incomplete arousal sequences recurred periodically and with increasing frequency and complexity until the infant either succeeded in clearing his/her airway or was completely aroused. Spontaneous arousal sequences, identical to those occurring during hypercarbia, occurred periodically during sleep. This observation suggests that the infant’s airway-defensive responses to hypercarbia consist of an increase in the frequency and complexity of an endogenously regulated, periodically occurring sequence of arousal behaviors.


2020 ◽  
Vol 129 (4) ◽  
pp. 918-930 ◽  
Author(s):  
Shannon L O’Brien ◽  
Mauro N Tammone ◽  
Pablo A Cuello ◽  
Eileen A Lacey

Abstract Understanding why social relationships vary among conspecifics is central to studies of animal behaviour. For many species, patterns of space use provide important insights into social behaviour. To characterize the social organization of the highland tuco-tuco (Ctenomys opimus), we used visual observations and radiotelemetry to quantify spatial relationships among adults in a population at Laguna de los Pozuelos, Jujuy Province, Argentina. Specifically, we sought to confirm anecdotal reports that these subterranean rodents are social, meaning that adults share burrow systems and nest sites. Our data indicate that the animals live in spatially distinct groups, although the number of individuals per group varies markedly. Although these relationships were robust with regard to location (above vs. below ground) and type of data (visual vs. telemetry), some groups identified during the daytime fissioned during the night. We suggest that the population of C. opimus at Pozuelos is facultatively social, meaning that individuals display predictable, adaptive differences in social relationships with conspecifics. More generally, our findings add to the growing number of subterranean species of rodents recognized as social, thereby generating new opportunities for comparative studies of these animals aimed at assessing the causes and consequences of variation in social organization.


2007 ◽  
Vol 85 (9) ◽  
pp. 944-955 ◽  
Author(s):  
Roxana R. Zenuto ◽  
Candelaria Estavillo ◽  
María Sol Fanjul

Biological odors that convey cues regarding individual identity are known to alter mating behavior in some rodents. Deposition of chemical signals by males on the substrate could give females information about their neighbors’ identity and allow familiarization with their odors. This study tested whether familiarization of females with conspecific male odors affects mating behavior in Ctenomys talarum Thomas, 1898, facilitating mating as a consequence of a decrease in aggressive behavior and an increase in sexual behavior. Tuco-tucos are solitary subterranean rodents that occupy and defend adjacent burrows. Both sexes usually scent-mark burrow openings, providing odor signals to neighbors during their aboveground patrolling and foraging activities. Hence, familiarity by odor cues may represent an important mechanism that mediates neighbor recognition and probably mate selection. In this study, familiarity was established by housing females with male odors for 8 days. In C. talarum, individual recognition by olfactory cues may reduce mating costs when pairing with neighbors, since females showed low aggression towards familiar males and copulations were not repeated in consecutive days. Females that were not exposed to male odors were more aggressive, but surprisingly these pairs copulated repeatedly.


2017 ◽  
Author(s):  
Ruben Vale ◽  
Dominic A. Evans ◽  
Tiago Branco

SummaryInstinctive defensive behaviors are essential for animal survival. Across the animal kingdom there are sensory stimuli that innately represent threat and trigger stereotyped behaviors such as escape or freezing [1-4]. While innate behaviors are considered to be hard-wired stimulus-responses [5], they act within dynamic environments, and factors such as the properties of the threat [6-9] and its perceived intensity [1, 10, 11], access to food sources [12-14] or expectations from past experience [15, 16], have been shown to influence defensive behaviors, suggesting that their expression can be modulated. However, despite recent work [2, 4, 17-21], little is known about how flexible mouse innate defensive behaviors are, and how quickly they can be modified by experience. To address this, we have investigated the dependence of escape behavior on learned knowledge about the spatial environment, and how the behavior is updated when the environment changes acutely. Using behavioral assays with innately threatening visual and auditory stimuli, we show that the primary goal of escape in mice is to reach a previously memorized shelter location. Memory of the escape target can be formed in a single shelter visit lasting less than 20 seconds, and changes in the spatial environment lead to a rapid update of the defensive action, including changing the defensive strategy from escape to freezing. Our results show that while there are innate links between specific sensory features and defensive behavior, instinctive defensive actions are surprisingly flexible and can be rapidly updated by experience to adapt to changing spatial environments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Danilo E. F. L. Flôres ◽  
Milene G. Jannetti ◽  
Giovane C. Improta ◽  
Patricia Tachinardi ◽  
Veronica S. Valentinuzzi ◽  
...  

Living organisms anticipate the seasons by tracking the proportion of light and darkness hours within a day—photoperiod. The limits of photoperiod measurement can be investigated in the subterranean rodents tuco-tucos (Ctenomys aff. knighti), which inhabit dark underground tunnels. Their exposure to light is sporadic and, remarkably, results from their own behavior of surface emergence. Thus, we investigated the endogenous and exogenous regulation of this behavior and its consequences to photoperiod measurement. In the field, animals carrying biologgers displayed seasonal patterns of daily surface emergence, exogenously modulated by temperature. In the laboratory, experiments with constant lighting conditions revealed the endogenous regulation of seasonal activity by the circadian clock, which has a multi-oscillatory structure. Finally, mathematical modeling corroborated that tuco-tuco’s light exposure across the seasons is sufficient for photoperiod encoding. Together, our results elucidate the interrelationship between the circadian clock and temperature in shaping seasonal light exposure patterns that convey photoperiod information in an extreme photic environment.


2020 ◽  
Author(s):  
Silvia Natale ◽  
Maria Esteban Masferrer ◽  
Senthilkumar Deivasigamani ◽  
Cornelius T. Gross

AbstractThe cerebral cortex is involved in the control of cognition and the processing of learned information and it appears to have a role in the adaptation of behavior in response to unpredictable circumstances. In addition, the cortex may have a role in the regulation of innate responses since rodents, cats or primates with surgical removal or accidental destruction of cortical regions show excessive irritability, aggression and rage elicited by threatening stimuli. However, it remains unclear whether cortex has an acute role in suppressing innate threat responses because the imprecision and chronic nature of these lesions leaves open the possibility that compensatory processes may underlie some of these phenotypes. In the present study we used pharmacogenetic inhibition to precisely, rapidly and reversibly suppress cortical pyramidal neuron function and examine its contribution to defensive behaviors elicited by a variety of innately aversive stimuli. Inhibition of cortex caused an increase of defensive responses elicited by an aggressive conspecific, a novel prey, and a physically stressful stimulus. These findings are consistent with a role of cortex in the acute inhibition of innate defensive behaviors.


2021 ◽  
Vol 43 (3) ◽  
pp. 1889-1905
Author(s):  
Zhiqiang Hao ◽  
Mingfang Han ◽  
Juanjuan Guo ◽  
Guanglin Li ◽  
Jianping He ◽  
...  

Subterranean rodents could maintain their normal activities in hypoxic environments underground. Eospalax fontanierii, as one kind of subterranean rodent found in China can survive very low oxygen concentration in labs. It has been demonstrated that long non-coding RNAs (lncRNAs) have important roles in gene expression regulations at different levels and some lncRNAs were found as hypoxia-regulated lncRNAs in cancers. We predicted thousands of lncRNAs in the liver and heart tissues by analyzing RNA-Seq data in Eospalax fontanierii. Those lncRNAs often have shorter lengths, lower expression levels, and lower GC contents than mRNAs. Majors of lncRNAs have expression peaks in hypoxia conditions. We found 1128 DE-lncRNAs (differential expressed lncRNAs) responding to hypoxia. To search the miRNA regulation network for lncRNAs, we predicted 471 and 92 DE-lncRNAs acting as potential miRNA target and target mimics, respectively. We also predicted the functions of DE-lncRNAs based on the co-expression networks of lncRNA-mRNA. The DE-lncRNAs participated in the functions of biological regulation, signaling, development, oxoacid metabolic process, lipid metabolic/biosynthetic process, and catalytic activity. As the first study of lncRNAs in Eospalax fontanierii, our results show that lncRNAs are popular in transcriptome widely and can participate in multiple biological processes in hypoxia responses.


Sign in / Sign up

Export Citation Format

Share Document