scholarly journals Identification and Functional Analysis of lncRNAs Responsive to Hypoxia in Eospalax fontanierii

2021 ◽  
Vol 43 (3) ◽  
pp. 1889-1905
Author(s):  
Zhiqiang Hao ◽  
Mingfang Han ◽  
Juanjuan Guo ◽  
Guanglin Li ◽  
Jianping He ◽  
...  

Subterranean rodents could maintain their normal activities in hypoxic environments underground. Eospalax fontanierii, as one kind of subterranean rodent found in China can survive very low oxygen concentration in labs. It has been demonstrated that long non-coding RNAs (lncRNAs) have important roles in gene expression regulations at different levels and some lncRNAs were found as hypoxia-regulated lncRNAs in cancers. We predicted thousands of lncRNAs in the liver and heart tissues by analyzing RNA-Seq data in Eospalax fontanierii. Those lncRNAs often have shorter lengths, lower expression levels, and lower GC contents than mRNAs. Majors of lncRNAs have expression peaks in hypoxia conditions. We found 1128 DE-lncRNAs (differential expressed lncRNAs) responding to hypoxia. To search the miRNA regulation network for lncRNAs, we predicted 471 and 92 DE-lncRNAs acting as potential miRNA target and target mimics, respectively. We also predicted the functions of DE-lncRNAs based on the co-expression networks of lncRNA-mRNA. The DE-lncRNAs participated in the functions of biological regulation, signaling, development, oxoacid metabolic process, lipid metabolic/biosynthetic process, and catalytic activity. As the first study of lncRNAs in Eospalax fontanierii, our results show that lncRNAs are popular in transcriptome widely and can participate in multiple biological processes in hypoxia responses.

2020 ◽  
Vol 15 ◽  
Author(s):  
Na Wang ◽  
Yukun Li ◽  
Sijing Liu ◽  
Liu Gao ◽  
Chang Liu ◽  
...  

Background: Recent studies revealed that the hypoglycemic hormone, glucagon-like peptide-1 (GLP-1), acted as an important modulator in osteogenesis of bone marrow derived mesenchymal stem cells (BMSCs). Objectives: The aim of this study was to identify the specific microRNA (miRNA) using bioinformatics analysis and validate the presence of differentially expressed microRNAs with their target genes after GLP-1 receptor agonist (GLP-1RA) administration involved in ostogenesis of BMSCs. Methods: MiRNAs were extracted from BMSCs after 5 days’ treatment and sent for high-throughput sequencing for differentially expressed (DE) miRNAs analyses. Then the expression of the DE miRNAs verified by the real-time RT-PCR analyses. Target genes were predicted, and highly enriched GOs and KEGG pathway analysis were conducted using bioinformatics analysis. For the functional study, two of the target genes, SRY (sex determining region Y)-box 5 (SOX5) and G protein-coupled receptor 84 (GPR84), were identified. Results: A total of 5 miRNAs (miRNA-509-5p, miRNA-547-3p, miRNA-201-3p, miRNA-201-5p, and miRNA-novel-272-mature) were identified differentially expressed among groups. The expression of miRNA-novel-272-mature were decreased during the osteogenic differentiation of BMSCs, and GLP-1RA further decreased its expression. MiRNA-novel-272-mature might interact with its target mRNAs to enhance osteogenesis. The lower expression of miRNA-novel-272-mature led to an increase in SOX5 and a decrease in GPR84 mRNA expression, respectively. Conclusions: Taken together, these results provide further insights to the pharmacological properties of GLP-1RA and expand our knowledge on the role of miRNAs-mRNAs regulation network in BMSCs’ differentiation.


2021 ◽  
Vol 560 ◽  
pp. 179-185
Author(s):  
Adiza Abass ◽  
Tokuju Okano ◽  
Kotchakorn Boonyaleka ◽  
Ryo Kinoshita-Daitoku ◽  
Shoji Yamaoka ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1268
Author(s):  
Shengchao Zhang ◽  
Sibtain Ahmad ◽  
Yuxia Zhang ◽  
Guohua Hua ◽  
Jianming Yi

Enhanced plane of nutrition at pre-weaning stage can promote the development of mammary gland especially heifer calves. Although several genes are involved in this process, long intergenic non-coding RNAs (lincRNAs) are regarded as key regulators in the regulated network and are still largely unknown. We identified and characterized 534 putative lincRNAs based on the published RNA-seq data, including heifer calves in two groups: fed enhanced milk replacer (EH, 1.13 kg/day, including 28% crude protein, 25% fat) group and fed restricted milk replacer (R, 0.45 kg/day, including 20% crude protein, 20% fat) group. Sub-samples from the mammary parenchyma (PAR) and mammary fat pad (MFP) were harvested from heifer calves. According to the information of these lincRNAs’ quantitative trait loci (QTLs), the neighboring and co-expression genes were used to predict their function. By comparing EH vs R, 79 lincRNAs (61 upregulated, 18 downregulated) and 86 lincRNAs (54 upregulated, 32 downregulated) were differentially expressed in MFP and PAR, respectively. In MFP, some differentially expressed lincRNAs (DELs) are involved in lipid metabolism pathways, while, in PAR, among of DELs are involved in cell proliferation pathways. Taken together, this study explored the potential regulatory mechanism of lincRNAs in the mammary gland development of calves under different planes of nutrition.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 630
Author(s):  
Yongqing Lan ◽  
Meng Li ◽  
Shuangli Mi

Hematopoietic differentiation is a well-orchestrated process by many regulators such as transcription factor and long non-coding RNAs (lncRNAs). However, due to the large number of lncRNAs and the difficulty in determining their roles, the study of lncRNAs is a considerable challenge in hematopoietic differentiation. Here, through gene co-expression network analysis over RNA-seq data generated from representative types of mouse myeloid cells, we obtained a catalog of potential key lncRNAs in the context of mouse myeloid differentiation. Then, employing a widely used in vitro cell model, we screened a novel lncRNA, named Gdal1 (Granulocytic differentiation associated lncRNA 1), from this list and demonstrated that Gdal1 was required for granulocytic differentiation. Furthermore, knockdown of Cebpe, a principal transcription factor of granulocytic differentiation regulation, led to down-regulation of Gdal1, but not vice versa. In addition, expression of genes involved in myeloid differentiation and its regulation, such as Cebpa, were influenced in Gdal1 knockdown cells with differentiation blockage. We thus systematically identified myeloid differentiation associated lncRNAs and substantiated the identification by investigation of one of these lncRNAs on cellular phenotype and gene regulation levels. This study promotes our understanding of the regulation of myeloid differentiation and the characterization of roles of lncRNAs in hematopoietic system.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 397
Author(s):  
Dadong Deng ◽  
Xihong Tan ◽  
Kun Han ◽  
Ruimin Ren ◽  
Jianhua Cao ◽  
...  

The development of the placental fold, which increases the maternal–fetal interacting surface area, is of primary importance for the growth of the fetus throughout the whole pregnancy. However, the mechanisms involved remain to be fully elucidated. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) are a new class of RNAs with regulatory functions and could be epigenetically regulated by histone modifications. In this study, 141 lncRNAs (including 73 up-regulated and 68 down-regulated lncRNAs) were identified to be differentially expressed in the placentas of pigs during the establishment and expanding stages of placental fold development. The differentially expressed lncRNAs and genes (DElncRNA-DEgene) co-expression network analysis revealed that these differentially expressed lncRNAs (DElncRNAs) were mainly enriched in pathways of cell adhesion, cytoskeleton organization, epithelial cell differentiation and angiogenesis, indicating that the DElncRNAs are related to the major events that occur during placental fold development. In addition, we integrated the RNA-seq (RNA sequencing) data with the ChIP-seq (chromatin immunoprecipitation sequencing) data of H3K4me3/H3K27ac produced from the placental samples of pigs from the two stages (gestational days 50 and 95). The analysis revealed that the changes in H3K4me3 and/or H3K27ac levels were significantly associated with the changes in the expression levels of 37 DElncRNAs. Furthermore, several H3K4me3/H3K27ac-lncRNAs were characterized to be significantly correlated with genes functionally related to placental development. Thus, this study provides new insights into understanding the mechanisms for the placental development of pigs.


1982 ◽  
Vol 92 (1) ◽  
pp. 172 ◽  
Author(s):  
J. H. Hendry ◽  
J. V. Moore ◽  
B. W. Hodgson ◽  
J. P. Keene

2013 ◽  
Vol 39 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Katarzyna Bernat

Abstract In this study, the dependence between volumetric exchange rate (n) in an SBR (Sequencing Batch Reactor) with a modified cycle and simultaneous nitrification and denitrification (SND) efficiency during the treatment of anaerobic sludge digester supernatant was determined. In the SBR cycle alternating three aeration phases (with limited dissolved oxygen (DO) concentration up to 0.7 mg O2/L) and two mixing phases were applied. The lengths of each aeration and mixing phases were 4 and 5.5 h, respectively. Independently of n, a total removal of ammonium was achieved. However, at n = 0.1 d-1 and n = 0.3 d-1 nitrates were the main product of nitrification, while at n = 0.5 d-1, both nitrates and nitrites occurred in the effluent. Under these operational conditions, despite low COD/N (ca. 4) ratio in the influent, denitrification in activated sludge was observed. A higher denitrification efficiency at n = 0.5 d-1 (51.3%) than at n = 0.1 d-1 (7.8%) indicated that n was a crucial factor influencing SND via nitrite and nitrate in the SBR with a low oxygen concentration in aeration phases.


Sign in / Sign up

Export Citation Format

Share Document