scholarly journals A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abolfazl Aqhili ◽  
Sara Darbari

AbstractIn this report, we propose the closed pack array of gold discs on glass, as a dual mode plasmonic tweezers that benefits from two trapping modes. The first trapping mode is based on leaky surface plasmon mode (LSPM) on the gold discs with a longer penetration depth in the water and a longer spatial trapping range, so that target nanoparticles with a radius of 100 nm can be attracted toward the gold surface from a vertical distance of about 2 µm. This trapping mode can help to overcome the inherent short range trapping challenge in the plasmonic tweezers. The second trapping mode is based on the dimer surface plasmonic mode (DSPM) in the nano-slits between the neighboring gold discs, leading to isolated and strong trapping sites for nanoparticles smaller than 34 nm. The proposed plasmonic tweezers can be excited in both LSPM and DSPM modes by switching the incident wavelength, resulting in promising and complementary functionalities. In the proposed plasmonic tweezers, we can attract the target particles towards the gold surface by LSPM gradient force, and trap them within a wide half widthhalfmaximum (HWHM) that allows studying the interactions between the trapped particles, due to their spatial proximity. Then, by switching to the DSPM trapping mode, we can rearrange the particles in a periodic pattern of isolated and stiff traps. The proposed plasmonic structure and the presented study opens a new insight for realizing efficient, dual-mode tweezers with complementary characteristics, suitable for manipulation of nanoparticles. Our thermal simulations demonstrate that the thermal-induced forces does not interefe with the proposed plasmonic tweezing.

1996 ◽  
Vol 3 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sandor Stephen Mester ◽  
Haym Benaroya

Extensive work has been done on the vibration characteristics of perfectly periodic structures. Disorder in the periodic pattern has been found to lead to localization in one-dimensional periodic structures. It is important to understand localization because it causes energy to be concentrated near the disorder and may cause an overestimation of structural damping. A numerical study is conducted to obtain a better understanding of localization. It is found that any mode, even the first, can localize due to the presence of small imperfections.


2016 ◽  
Vol 16 (18) ◽  
pp. 12359-12382 ◽  
Author(s):  
Chung-Chieh Wang ◽  
Bing-Kui Chiou ◽  
George Tai-Jen Chen ◽  
Hung-Chi Kuo ◽  
Ching-Hwang Liu

Abstract. During 11–12 June 2012, quasistationary linear mesoscale convective systems (MCSs) developed near northern Taiwan and produced extreme rainfall up to 510 mm and severe flooding in Taipei. In the midst of background forcing of low-level convergence, the back-building (BB) process in these MCSs contributed to the extreme rainfall and thus is investigated using a cloud-resolving model in the case study here. Specifically, as the cold pool mechanism is not responsible for the triggering of new BB cells in this subtropical event during the meiyu season, we seek answers to the question why the location about 15–30 km upstream from the old cell is still often more favorable for new cell initiation than other places in the MCS. With a horizontal grid size of 1.5 km, the linear MCS and the BB process in this case are successfully reproduced, and the latter is found to be influenced more by the thermodynamic and less by dynamic effects based on a detailed analysis of convective-scale pressure perturbations. During initiation in a background with convective instability and near-surface convergence, new cells are associated with positive (negative) buoyancy below (above) due to latent heating (adiabatic cooling), which represents a gradual destabilization. At the beginning, the new development is close to the old convection, which provides stronger warming below and additional cooling at mid-levels from evaporation of condensates in the downdraft at the rear flank, thus yielding a more rapid destabilization. This enhanced upward decrease in buoyancy at low levels eventually creates an upward perturbation pressure gradient force to drive further development along with the positive buoyancy itself. After the new cell has gained sufficient strength, the old cell's rear-flank downdraft also acts to separate the new cell to about 20 km upstream. Therefore, the advantages of the location in the BB process can be explained even without the lifting at the leading edge of the cold outflow.


Author(s):  
Chih-Kuang Yu ◽  
Ming-Che Hsieh ◽  
Chun-Kai Liu ◽  
Ming-Ji Dai ◽  
Ra-Min Tain

In this study, the thermal simulations of 3 dimensional IC packages base on 4-layer vertical stacked die (bare die on bare die) with TSV (through silicon vias) and micro-bumps structure are conducted. The thermal models by finite volume method are developed for different geometrical parameters (TSV, micro-bumps distribution arrangement and spacer thickness) and material property (thermal conductivity of spacer). The thermal performance and the heat transfer mechanism for the stacked die package are analyzed for optimizing the geometrical and material parameters. Not only the temperature distributions but also the junction temperature and thermal resistances in 4-layer stacked die package with different multi-die power configurations are shown and discussed.


2013 ◽  
Vol 49 (10) ◽  
pp. 821-828 ◽  
Author(s):  
Akram Akrout ◽  
Kais Dridi ◽  
Sawsan Abdul-Majid ◽  
Joe Seregelyi ◽  
Trevor J. Hall

Sign in / Sign up

Export Citation Format

Share Document