scholarly journals Cocaine self-administration induces sex-dependent protein expression in the nucleus accumbens

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alberto J. López ◽  
Amy R. Johnson ◽  
Tanner J. Euston ◽  
Rashaun Wilson ◽  
Suzanne O. Nolan ◽  
...  

AbstractSubstance use disorder (SUD) is a chronic neuropsychiatric condition characterized by long-lasting alterations in the neural circuitry regulating reward and motivation. Substantial work has focused on characterizing the molecular substrates that underlie these persistent changes in neural function and behavior. However, this work has overwhelmingly focused on male subjects, despite mounting clinical and preclinical evidence that females demonstrate dissimilar progression to SUD and responsivity to stimulant drugs of abuse, such as cocaine. Here, we show that sex is a critical biological variable that defines drug-induced plasticity in the nucleus accumbens (NAc). Using quantitative mass spectrometry, we assessed the protein expression patterns induced by cocaine self-administration and demonstrated unique molecular profiles between males and females. We show that 1. Cocaine self-administration induces non-overlapping protein expression patterns in significantly regulated proteins in males and females and 2. Critically, cocaine-induced protein regulation differentially interacts with sex to eliminate basal sexual dimorphisms in the proteome. Finally, eliminating these baseline differences in the proteome is concomitant with the elimination of sex differences in behavior for non-drug rewards. Together, these data suggest that cocaine administration is capable of rewriting basal proteomic function and reward-associated behaviors.

2017 ◽  
Vol 184 (2) ◽  
pp. 409-421 ◽  
Author(s):  
Safa Ben Mimouna ◽  
Marouane Chemek ◽  
Sana Boughammoura ◽  
Mohamed Banni ◽  
Imed Messaoudi

2007 ◽  
Vol 21 (5) ◽  
Author(s):  
Frank A. Witzmann ◽  
David Hong ◽  
Zachary A. Rodd ◽  
Jay R. Simon ◽  
William A. Truitt ◽  
...  

2019 ◽  
Vol 9 (12) ◽  
pp. 367 ◽  
Author(s):  
Sucharita S. Somkuwar ◽  
Chitra D. Mandyam

Chronic intermittent ethanol vapor exposure (CIE) in rodents produces reliable and high blood ethanol concentration and behavioral symptoms associated with moderate to severe alcohol use disorder (AUD)—for example, escalation of operant ethanol self-administration, a feature suggestive of transition from recreational to addictive use, is a widely replicated behavior in rats that experience CIE. Herein, we present evidence from a subset of rats that do not demonstrate escalation of ethanol self-administration following seven weeks of CIE. These low responders (LR) maintain low ethanol self-administration during CIE, demonstrate lower relapse to drinking during abstinence and reduced reinstatement of ethanol seeking triggered by ethanol cues when compared with high responders (HR). We examined the blood ethanol levels in LR and HR rats during CIE and show higher levels in LR compared with HR. We also examined peak corticosterone levels during CIE and show that LR rats have higher levels compared with HR rats. Lastly, we evaluated the levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the nucleus accumbens shell and reveal that the activity of CaMKII, which is autophosphorylated at site Tyr-286, is significantly reduced in HR rats compared with LR rats. These findings demonstrate that dysregulation of the hypothalamic–pituitary–adrenal axis activity and plasticity-related proteins regulating molecular memory in the nucleus accumbens shell are associated with higher ethanol-drinking and -seeking in HR rats. Future mechanistic studies should evaluate CaMKII autophosphorylation-dependent remodeling of glutamatergic synapses in the ventral striatum as a plausible mechanism for the CIE-induced enhanced ethanol drinking and seeking behaviors.


2021 ◽  
Author(s):  
◽  
Ross van de Wetering

<p>Rationale. ±3,4-Methylenedioxymethamphetamine (MDMA; ‘ecstasy’) is a popular recreational drug of abuse. Like other drugs of abuse, a proportion of users develop symptoms that are characteristic of a Substance Use Disorder (SUD). The behavioural and neurobiological consequences of repeated misuse of MDMA are not well understood, however.  Objectives. The purpose of the present thesis was to investigate behaviourally relevant neuroadaptations that develop with repeated MDMA exposure in laboratory rats.  Methods. First, the effect of chronic, long-access (6 hour) self-administration of MDMA on the accumulation of the transcription factor, ΔFosB, in the nucleus accumbens (core, shell), dorsal striatum (dorsomedial, dorsolateral, ventromedial, ventrolateral), prefrontal cortex (anterior cingulate, prelimbic, infralimbic, orbitofrontal), amygdala (central, basolateral), ventral tegmental area (anterior, posterior), and raphe (dorsal, median) was measured using immunohistochemistry. Second, the behavioural relevance of these findings was determined by examining the effect of bi-lateral intra-striatal (nucleus accumbens, dorsomedial striatum, dorsolateral striatum) microinjections of MDMA (200 μg/1 μL/side) on the expression of behavioural sensitisation following two days of withdrawal from a regimen of repeated, systemic MDMA exposure (10 mg/kg/day, i.p., for 5 days). Third, a procedure was developed to examine neurochemical correlates of sensitised MDMA-produced behaviour (0, 5, 10 mg/kg, i.p.) following the same regimen of repeated MDMA exposure. Samples were collected from the medial striatum using in vivo microdialysis and the extracellular concentrations of serotonin, dopamine, MDMA, and their metabolites were quantified using liquid chromatography coupled with quadrupole time-of-flight (Q-TOF) mass spectrometry. Lastly, a unique untargeted metabolomics procedure was developed to further analyse these microdialysis samples and to identify novel or unexpected metabolites that were relevant to the sensitised behavioural response produced by MDMA.  Results. MDMA self-administration produced region-dependant increases in ΔFosB. Significant increases in ΔFosB were observed in the nucleus accumbens core, the medial areas of the dorsal striatum, as well as all areas of the prefrontal cortex and amygdala. Small, but significant increases were also observed in the dorsal raphe. Increases were observed in the nucleus accumbens shell and the posterior tail of the ventral tegmental area, but these increases were not significant following statistical correction for multiple comparisons. Acute exposure to MDMA increased locomotor activity only when the drug was infused into the nucleus accumbens. Following repeated systemic exposure, behavioural sensitisation was expressed when MDMA was infused into both the nucleus accumbens or the dorsomedial striatum, but not the dorsolateral striatum. Analysis of microdialysates from the medial striatum indicated that behavioural sensitisation was accompanied by small increases in baseline levels of extracellular serotonin and decreased MDMA-produced increases in serotonin, but these changes were not statistically significant. Behavioural sensitisation was also accompanied by increased extracellular concentrations of dopamine at baseline and following acute MDMA exposure, but these data were not statistically analysed due to small sample sizes. MDMA-produced extracellular concentrations of MDMA did not change with repeated exposure. Untargeted metabolomics revealed potential changes in MDMA and dopamine metabolism that might be relevant to the sensitised behavioural response.  Conclusions. The findings of the current research suggest that repeated MDMA exposure results in many of the same neuroadaptations that result from repeated exposure to other drugs of abuse. These included increased ΔFosB expression in many brain regions that are relevant to addiction, such as the nucleus accumbens, dorsal striatum, and prefrontal cortex. Dopaminergic mechanisms also appeared to be influenced and were associated with sensitised MDMA-produced behaviour. Surprisingly, serotonergic mechanisms were not significantly impacted by repeated MDMA exposure under the current conditions. Some of the procedures developed in this thesis are unique and may be of value for future research investigating the neurochemical underpinnings of addictive behaviour or other disease states.</p>


2021 ◽  
Author(s):  
Daniela Neuhofer ◽  
Constanza Garcia-Keller ◽  
Madeline Hohmeister ◽  
Kailyn Seidling ◽  
Lauren Beloate ◽  
...  

Abstract Given that 30% of chronic cannabis users develop cannabis use disorder (CUD), it is critical to identify neuroadaptations that contribute to this disease. The nucleus accumbens core (NAcore) is important for drug seeking and ~ 90% of all NAcore neurons are divided into D1- and D2-medium spiny neurons (MSNs) that serve opposing roles in drug seeking. Drugs of abuse induce D1- and D2-MSN specific adaptations but whether ∆9-tetrahydrocannabinol (THC) use initiates similar neuroadaptations is unknown. D1- and D2-Cre transgenic rats were transfected with Cre-dependent reporters and trained to self-administer THC + cannabidiol (THC + CBD). After extinction training dendritic spine morphology, glutamate transmission, CB1R function and cFOS expression were quantified. We found that extinction from THC + CBD induced a loss of large spine heads in D1- but not D2-MSNs and a commensurate reduction in glutamate synaptic transmission. Also, CB1R function was impaired on glutamatergic synapses onto D1-MSNs and this was paralleled by an augmented capacity to potentiate glutamate transmission in D1-MSNs. CB1R function and glutamate synaptic transmission on D2-MSN synapses were unaffected by THC + CBD use. Using cFOS expression as an activity marker, we found that D1-MSNs activity remained unchanged after extinction from THC + CBD but significantly increased after 60 minutes cue-induced drug seeking. Surprisingly, the percentage of D2-MSNs expressing cFOS decreased after extinction from THC + CBD and this decrease was restored by drug cues. Thus, glutamatergic adaptations in D1-MSNs partially predict activity changes and pose modulating CB1R function that is down-regulated selectively at D1-MSN synapses as a potential treatment strategy for CUD.


2021 ◽  
Author(s):  
◽  
Ross van de Wetering

<p>Rationale. ±3,4-Methylenedioxymethamphetamine (MDMA; ‘ecstasy’) is a popular recreational drug of abuse. Like other drugs of abuse, a proportion of users develop symptoms that are characteristic of a Substance Use Disorder (SUD). The behavioural and neurobiological consequences of repeated misuse of MDMA are not well understood, however.  Objectives. The purpose of the present thesis was to investigate behaviourally relevant neuroadaptations that develop with repeated MDMA exposure in laboratory rats.  Methods. First, the effect of chronic, long-access (6 hour) self-administration of MDMA on the accumulation of the transcription factor, ΔFosB, in the nucleus accumbens (core, shell), dorsal striatum (dorsomedial, dorsolateral, ventromedial, ventrolateral), prefrontal cortex (anterior cingulate, prelimbic, infralimbic, orbitofrontal), amygdala (central, basolateral), ventral tegmental area (anterior, posterior), and raphe (dorsal, median) was measured using immunohistochemistry. Second, the behavioural relevance of these findings was determined by examining the effect of bi-lateral intra-striatal (nucleus accumbens, dorsomedial striatum, dorsolateral striatum) microinjections of MDMA (200 μg/1 μL/side) on the expression of behavioural sensitisation following two days of withdrawal from a regimen of repeated, systemic MDMA exposure (10 mg/kg/day, i.p., for 5 days). Third, a procedure was developed to examine neurochemical correlates of sensitised MDMA-produced behaviour (0, 5, 10 mg/kg, i.p.) following the same regimen of repeated MDMA exposure. Samples were collected from the medial striatum using in vivo microdialysis and the extracellular concentrations of serotonin, dopamine, MDMA, and their metabolites were quantified using liquid chromatography coupled with quadrupole time-of-flight (Q-TOF) mass spectrometry. Lastly, a unique untargeted metabolomics procedure was developed to further analyse these microdialysis samples and to identify novel or unexpected metabolites that were relevant to the sensitised behavioural response produced by MDMA.  Results. MDMA self-administration produced region-dependant increases in ΔFosB. Significant increases in ΔFosB were observed in the nucleus accumbens core, the medial areas of the dorsal striatum, as well as all areas of the prefrontal cortex and amygdala. Small, but significant increases were also observed in the dorsal raphe. Increases were observed in the nucleus accumbens shell and the posterior tail of the ventral tegmental area, but these increases were not significant following statistical correction for multiple comparisons. Acute exposure to MDMA increased locomotor activity only when the drug was infused into the nucleus accumbens. Following repeated systemic exposure, behavioural sensitisation was expressed when MDMA was infused into both the nucleus accumbens or the dorsomedial striatum, but not the dorsolateral striatum. Analysis of microdialysates from the medial striatum indicated that behavioural sensitisation was accompanied by small increases in baseline levels of extracellular serotonin and decreased MDMA-produced increases in serotonin, but these changes were not statistically significant. Behavioural sensitisation was also accompanied by increased extracellular concentrations of dopamine at baseline and following acute MDMA exposure, but these data were not statistically analysed due to small sample sizes. MDMA-produced extracellular concentrations of MDMA did not change with repeated exposure. Untargeted metabolomics revealed potential changes in MDMA and dopamine metabolism that might be relevant to the sensitised behavioural response.  Conclusions. The findings of the current research suggest that repeated MDMA exposure results in many of the same neuroadaptations that result from repeated exposure to other drugs of abuse. These included increased ΔFosB expression in many brain regions that are relevant to addiction, such as the nucleus accumbens, dorsal striatum, and prefrontal cortex. Dopaminergic mechanisms also appeared to be influenced and were associated with sensitised MDMA-produced behaviour. Surprisingly, serotonergic mechanisms were not significantly impacted by repeated MDMA exposure under the current conditions. Some of the procedures developed in this thesis are unique and may be of value for future research investigating the neurochemical underpinnings of addictive behaviour or other disease states.</p>


2017 ◽  
Vol 1 ◽  
pp. 239821281771108
Author(s):  
Maria C. Schippers ◽  
Mathijs Gaastra ◽  
Tanja Mesman ◽  
Dustin Schetters ◽  
Yvar van Mourik ◽  
...  

Background: Deep brain stimulation is explored as a new intervention for treatment-resistant substance use dependence. A candidate brain region is the nucleus accumbens, due to its involvement in reward and motivation. This study aimed to explore effects of NAcore and NAshell deep brain stimulation on aspects of heroin taking and seeking in a self-administration model for rats. Methods: NAcore and NAshell deep brain stimulation was applied during 25 or 100 µg/kg/infusion heroin self-administration on an FR4 schedule of reinforcement and during cue- and heroin-induced reinstatement. In a separate group, effects of NAcore deep brain stimulation on heroin self-administration on a progressive ratio schedule and the first extinction session were examined. Results: NAcore and NAshell deep brain stimulation did not alter heroin self-administration on an FR4 schedule. NAcore deep brain stimulation decreased cue – but not drug-induced reinstatement of heroin seeking, whereas NAshell deep brain stimulation did not affect reinstatement responding. In the second experiment, NAcore deep brain stimulation reduced responding during a progressive ratio schedule of heroin reinforcement. Finally, deep brain stimulation facilitated extinction from day 1 throughout the course of extinction learning. Conclusion: Taken together, the differential effects of NAcore and NAshell deep brain stimulation on heroin taking and seeking are in line with the distinct functional roles of these sub-regions therein. Conditioned cues have been shown to be very powerful stimuli for the persistence of addiction and relapse to drug use. Therefore, the present findings that NAcore deep brain stimulation decreases motivation for heroin taking and cue-conditioned behaviour and facilitates extinction learning are very promising, supporting the positive findings from clinical case studies.


2021 ◽  
Author(s):  
Joaquin E Douton ◽  
Nikhil K Acharya ◽  
Brooke Stoltzful ◽  
Dongxiao Sun ◽  
Patricia S. Grigson ◽  
...  

Substance use disorder is a difficult disease to treat due to its relapsing nature. In the last decade, opioid use disorder has been a threat to public health, being declared an epidemic by the Centers for Disease Control and Prevention. This is a tragic situation, considering there are currently effective, yet not ideal, treatments to prevent relapse. Recent research has shown that hormones that modulate hunger and satiety also can modulate motivated behavior for drugs of abuse. For example, the short-acting analog of glucagon-like peptide-1 (GLP-1), an incretin hormone that regulates homeostatic feeding, has been shown to reduce responding for rewarding stimuli such as food, cocaine, heroin and nicotine. Here, we tested the acute effects of the long-acting GLP-1 analog, liraglutide, on heroin seeking. We found that, in rats with heroin self-administration experience, subcutaneous (sc) administration of an acute dose of 0.3 mg/kg liraglutide was effective in preventing relapse after exposure to three major precipitators: drug-associated cues, stress, and the drug itself. However, the effects of the drug were contingent upon the pretreatment time, with the drug being fully effective when administered using a 6 h, rather than a 4 h pretreatment time. Finally, we confirmed that the reduction in drug seeking is not due to a locomotor impairment, as liraglutide did not significantly alter performance in a rotarod test. As such, this acute non-opioid treatment may serve as a new and effective bridge to treatment.


2019 ◽  
Author(s):  
Kirsten A. Porter-Stransky ◽  
Alyssa K. Petko ◽  
Saumya L. Karne ◽  
L. Cameron Liles ◽  
Nikhil M. Urs ◽  
...  

AbstractPsychostimulants and opioids increase dopamine (DA) neurotransmission, activating D1 and D2 G protein-coupled receptors. β-arrestin2 (βarr2) desensitizes and internalizes these receptors and initiates G protein-independent signaling. Previous work revealed that mice with a global or cell-specific knockout of βarr2 have altered responses to certain drugs; however, the effects of βarr2 on the excitability of medium spiny neurons (MSNs) and its role in mediating the rewarding effects of drugs of abuse are unknown. D1-Cre and D2-Cre transgenic mice were crossed with floxed βarr2 mice to eliminate βarr2 specifically in cells containing either D1 (D1βarr2-KO) or D2 (D2βarr2-KO) receptors. We used slice electrophysiology to characterize the role of βarr2 in modulating D1 and D2 nucleus accumbens MSN intrinsic excitability in response to DA and tested the locomotor-activating and rewarding effects of cocaine and morphine in these mice. We found that eliminating βarr2 attenuated the ability of DA to inhibit D2-MSNs but had little effect on the DA response of D1-MSNs. While D1βarr2-KO mice had mostly normal drug responses, D2βarr2-KO mice showed dose-dependent reductions in acute locomotor responses to cocaine and morphine, attenuated locomotor sensitization to cocaine, and blunted cocaine reward measured with conditioned place preference. Both D2βarr2-KO and D1βarr2-KO mice displayed an enhanced conditioned place preference for the highest dose of morphine. These results indicate that D2-derived βarr2 functionally contributes to the ability of DA to inhibit D2-MSNs and multiple behavioral responses to psychostimulants and opioids, while loss of βarr2 in D1 neurons has little impact on D1-MSN excitability or drug-induced behaviors.


Sign in / Sign up

Export Citation Format

Share Document