scholarly journals LDL receptor-peptide conjugate as in vivo tool for specific targeting of pancreatic ductal adenocarcinoma

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Angélina Acier ◽  
Magali Godard ◽  
Fanny Gassiot ◽  
Pascal Finetti ◽  
Marion Rubis ◽  
...  

AbstractDespite clinical advances in diagnosis and treatment, pancreatic ductal adenocarcinoma (PDAC) remains the third leading cause of cancer death, and is still associated with poor prognosis and dismal survival rates. Identifying novel PDAC-targeted tools to tackle these unmet clinical needs is thus an urgent requirement. Here we use a peptide conjugate that specifically targets PDAC through low-density lipoprotein receptor (LDLR). We demonstrate by using near-infrared fluorescence imaging the potential of this conjugate to specifically detect and discriminate primary PDAC from healthy organs including pancreas and from benign mass-forming chronic pancreatitis, as well as detect metastatic pancreatic cancer cells in healthy liver. This work paves the way towards clinical applications in which safe LDLR-targeting peptide conjugate promotes tumor-specific delivery of imaging and/or therapeutic agents, thereby leading to substantial improvements of the PDAC patient’s outcome.

1986 ◽  
Vol 234 (1) ◽  
pp. 245-248 ◽  
Author(s):  
W Jessup ◽  
G Jurgens ◽  
J Lang ◽  
H Esterbauer ◽  
R T Dean

The incorporation of the lipid peroxidation product 4-hydroxynonenal into low-density lipoprotein (LDL) increases the negative charge of the particle, and decreases its affinity for the fibroblast LDL receptor. It is suggested that this modification may occur in vivo, and might promote atherogenesis.


2020 ◽  
Vol 7 ◽  
Author(s):  
Haitham Khraishah ◽  
Farouc A. Jaffer

Despite exciting advances in structural intravascular imaging [intravascular ultrasound (IVUS) and optical coherence tomography (OCT)] that have enabled partial assessment of atheroma burden and high-risk features associated with acute coronary syndromes, structural-based imaging modalities alone do not comprehensively phenotype the complex pathobiology of atherosclerosis. Near-infrared fluorescence (NIRF) is an emerging molecular intravascular imaging modality that allows for in vivo visualization of pathobiological and cellular processes at atheroma plaque level, including inflammation, oxidative stress, and abnormal endothelial permeability. Established intravascular NIRF imaging targets include macrophages, cathepsin protease activity, oxidized low-density lipoprotein and abnormal endothelial permeability. Structural and molecular intravascular imaging provide complementary information about plaque microstructure and biology. For this reason, integrated hybrid catheters that combine NIRF-IVUS or NIRF-OCT have been developed to allow co-registration of morphological and molecular processes with a single pullback, as performed for standalone IVUS or OCT. NIRF imaging is approaching application in clinical practice. This will be accelerated by the use of FDA-approved indocyanine green (ICG), which illuminates lipid- and macrophage-rich zones of permeable atheroma. The ability to comprehensively phenotype coronary pathobiology in patients will enable a deeper understanding of plaque pathobiology, improve local and patient-based risk prediction, and usher in a new era of personalized therapy.


1995 ◽  
Vol 305 (3) ◽  
pp. 897-904 ◽  
Author(s):  
C Fitzsimmons ◽  
R Bush ◽  
D Hele ◽  
C Godliman ◽  
E Gherardi ◽  
...  

MAC188 S/S is a monoclonal antibody which can be used in vivo to measure the absolute number of functioning low-density lipoprotein (LDL) receptors in a rabbit. The antibody binds to the extra-cellular domain of the LDL receptor and binding is not blocked by the presence of LDL. When the antibody-receptor complex is internalized, receptor recycling is inhibited for several hours. Thus when saturating doses of MAC188 S/S are administered intravenously, the amount of antibody removed from the blood (minus non-specific removal) is determined solely by the total number of LDL receptors in an animal. In this study MAC188 S/S was used to measure the number of LDL receptors in control rabbits and in animals treated with 17 alpha-ethinyl oestradiol. After treatment (which caused a 47% decrease in plasma cholesterol), receptor-mediated removal of MAC188 S/S from the blood was saturated in both groups following injection of 3.0 mg of antibody per kg body weight. Based on the amount of antibody removed via the LDL receptor at this dose, the total number of accessible LDL receptors was calculated as (2.0 +/- 0.3) x 10(15) receptors per kg body weight in control rabbits and (4.0 +/- 0.4) x 10(15) receptors per kg body weight in oestrogen-treated animals. The number of receptors in various organs was also determined. The monoclonal antibody approach therefore, allows accurate determination of LDL receptor numbers in animals with markedly different concentrations of circulating LDL, conditions in which the use of endogenous ligand would be subject to significant errors.


2015 ◽  
Vol 472 (3) ◽  
pp. 275-286 ◽  
Author(s):  
Vikram R. Shende ◽  
Amar Bahadur Singh ◽  
Jingwen Liu

PPARδ activation beneficially regulates lipid metabolism. We have now identified a novel function of PPARδ that increases LDL receptor gene transcription in hepatic cells in vitro and in vivo through direct binding to a PPRE motif on LDLR promoter.


2018 ◽  
Vol 50 (3) ◽  
pp. 823-840 ◽  
Author(s):  
Dan-ming Wei ◽  
Yi-wu Dang ◽  
Zhen-bo Feng ◽  
Lu Liang ◽  
Lu Zhang ◽  
...  

Background/Aims: Accumulating evidence strongly suggests that microRNAs (miRNAs) modulate the expression of known tumor suppressor genes and oncogenes. In the present study, we found that the proliferation and invasion ability of pancreatic ductal adenocarcinoma (PDAC) cells were significantly suppressed by the overexpression of miR-23b-3p. In addition, there are miR-23b-3p binding sites in annexin A2 (ANXA2). Here, we investigated whether miR-23b-3p had an impact on the progression and metastasis of PDAC by targeting ANXA2. Methods: Cell proliferation, migration, and invasion, and cell cycle assays were performed to explore the effect of miR-23b-3p on various malignant phenotypes of pancreatic cancer cells. The size of tumors was observed following miR-23b-3p overexpression in an in vivo chick chorioallantoic membrane assay. Dual-luciferase reporter, quantitative real-time PCR, western blot, and immunohistochemical analyses were used to validate the relationship between miR-23b-3p and ANXA2 in vitro. Results: We observed that miR-23b-3p could bind specifically to the 3′ untranslated region of ANXA2 and inhibit its expression. MiR-23b-3p overexpression downregulated the expression of ANXA2 mRNA in PDAC cells and limited the size of tumors or even prevented tumor formation. In addition, there was a negative correlation between miR-23b-3p expression and ANXA2 protein expression in clinical specimens. Conclusion: MiR-23b-3p inhibits the development and progression of PDAC by regulating ANXA2 directly.


1993 ◽  
Vol 21 (3) ◽  
pp. 503-506 ◽  
Author(s):  
H. Sinzinger ◽  
Irene Virgolini ◽  
S. R. Li ◽  
A. Gerakakis ◽  
P. Fitscha ◽  
...  

2009 ◽  
Vol 118 (5) ◽  
pp. 333-339 ◽  
Author(s):  
Allan D. Sniderman ◽  
Jacqueline De Graaf ◽  
Patrick Couture ◽  
Ken Williams ◽  
Robert S. Kiss ◽  
...  

The objectives of this analysis are to re-examine the foundational studies of the in vivo metabolism of plasma LDL (low-density lipoprotein) particles in humans and, based on them, to reconstruct our understanding of the governance of the concentration of plasma LDL and the maintenance of cholesterol homoeostasis in the hepatocyte. We believe that regulation of cholesterol homoeostasis within the hepatocyte is demonstrably more complex than envisioned by the LDL receptor paradigm, the conventional model to explain the regulation of plasma LDL and the fluxes of cholesterol into the liver, a model which was generated in the fibroblast but has never been fully validated in the hepatocyte. We suggest that the LDL receptor paradigm should be reconfigured as the apoB (apolipoprotein B) paradigm, which states that the rate at which LDL particles are produced is at least an important determinant of their concentration in plasma as the rate at which they are cleared from plasma and that secretion of cholesterol within VLDL (very-low-density lipoprotein) particles is an important mechanism of maintaining cholesterol homoeostasis within the hepatocyte. These two paradigms are not mutually exclusive. The LDL receptor paradigm, however, includes only one critical aspect of the regulation of plasma LDL, namely the rate at which LDL particles are cleared through the LDL receptor pathway, but ignores another – the rate at which LDL particles are added to the plasma compartment. The apoB paradigm includes both and points to a different model of how the hepatocyte achieves cholesterol homoeostasis in a complex metabolic environment.


Sign in / Sign up

Export Citation Format

Share Document