scholarly journals Strong nutrient-plant interactions enhance the stability of ecosystems

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zachariah G. Schonberger ◽  
Kevin McCann ◽  
Gabriel Gellner

AbstractModular food web theory shows how weak energetic fluxes resulting from consumptive interactions plays a major role in stabilizing food webs in space and time. Despite the reliance on energetic fluxes, food web theory surprisingly remains poorly understood within an ecosystem context that naturally focuses on material fluxes. At the same time, while ecosystem theory has employed modular nutrient-limited ecosystem models to understand how limiting nutrients alter the structure and dynamics of food webs, ecosystem theory has overlooked the role of key ecosystem interactions and their strengths (e.g., plant-nutrient; R-N) in mediating the stability of nutrient-limited ecosystems. Here, towards integrating food web theory and ecosystem theory, we first briefly review consumer-resource interactions (C-R) highlighting the relationship between the structure of C-R interactions and the stability of food web modules. We then translate this framework to nutrient-based systems, showing that the nutrient-plant interaction behaves as a coherent extension of current modular food web theory; however, in contrast to the rule that weak C-R interactions tend to be stabilizing we show that strong nutrient-plant interactions are potent stabilizers in nutrient-limited ecosystem models.

Author(s):  
Kevin S. McCann

This chapter examines the basic assumptions of classic food web theory. It first considers the classic whole-community approach, which assumes that any specific matrix represents a sample from a “statistical universe” of interaction strengths for a given set of n species. It then describes some matrix approaches to see if context-dependent techniques can be applied to matrix theory, along with the simple graphical techniques of Gershgorin discs employed as an intuitive approach to eigenvalues. It argues that there are some rather intriguing “gravitational-like” properties of Gershgorin discs for some important biologically motivated matrices. The chapter proceeds by discussing some classic whole-matrix results that highlight the connections between the stability of lower-dimensional modules and whole food webs. Finally, it shows how the ideas derived from classic whole-system matrix approaches generally agree with the results of modular theory.


2009 ◽  
Vol 364 (1524) ◽  
pp. 1789-1801 ◽  
Author(s):  
Kevin Shear McCann ◽  
Neil Rooney

Here, we synthesize a number of recent empirical and theoretical papers to argue that food-web dynamics are characterized by high amounts of spatial and temporal variability and that organisms respond predictably, via behaviour, to these changing conditions. Such behavioural responses on the landscape drive a highly adaptive food-web structure in space and time. Empirical evidence suggests that underlying attributes of food webs are potentially scale-invariant such that food webs are characterized by hump-shaped trophic structures with fast and slow pathways that repeat at different resolutions within the food web. We place these empirical patterns within the context of recent food-web theory to show that adaptable food-web structure confers stability to an assemblage of interacting organisms in a variable world. Finally, we show that recent food-web analyses agree with two of the major predictions of this theory. We argue that the next major frontier in food-web theory and applied food-web ecology must consider the influence of variability on food-web structure.


Author(s):  
Kevin S. McCann

This chapter considers four-species modules and the role of generalism (effectively a three-species module with a consumer feeding on two resources). It first examines how generalists affect the dynamics of food webs by focusing on a set of modules that contrast generalist consumer dynamics relative to the specialist case. It then discusses organismal trade-offs that play a role in governing the diamond food web module and the intraguild predation module, arguing that such tradeoffs influence the flux of matter, the organization of interaction strengths, and ultimately the stability of communities. The chapter also reviews empirical evidence showing that apparent competition and the diamond module with and without intraguild predation are ubiquitous, and that weak interactions in simple modules seem to promote less variable population dynamics.


2011 ◽  
Vol 14 (04) ◽  
pp. 635-647 ◽  
Author(s):  
GIAN MARCO PALAMARA ◽  
VINKO ZLATIĆ ◽  
ANTONIO SCALA ◽  
GUIDO CALDARELLI

In this work we analyze the topological and dynamical properties of a simple model of complex food webs, namely the niche model. In order to underline competition among species, we introduce "prey" and "predators" weighted overlap graphs derived from the niche model and compare synthetic food webs with real data. Doing so, we find new tests for the goodness of synthetic food web models and indicate a possible direction of improvement for existing ones. We then exploit the weighted overlap graphs to define a competition kernel for Lotka–Volterra population dynamics and find that for such a model the stability of food webs decreases with its ecological complexity.


2007 ◽  
Vol 274 (1618) ◽  
pp. 1617-1624 ◽  
Author(s):  
Michio Kondoh

The mechanism for maintaining complex food webs has been a central issue in ecology because theory often predicts that complexity (higher the species richness, more the interactions) destabilizes food webs. Although it has been proposed that prey anti-predator defence may affect the stability of prey–predator dynamics, such studies assumed a limited and relatively simpler variation in the food-web structure. Here, using mathematical models, I report that food-web flexibility arising from prey anti-predator defence enhances community-level stability (community persistence and robustness) in more complex systems and even changes the complexity–stability relationship. The model analysis shows that adaptive predator-specific defence enhances community-level stability under a wide range of food-web complexity levels and topologies, while generalized defence does not. Furthermore, while increasing food-web complexity has minor or negative effects on community-level stability in the absence of defence adaptation, or in the presence of generalized defence, in the presence of predator-specific defence, the connectance–stability relationship may become unimodal. Increasing species richness, in contrast, always lowers community-level stability. The emergence of a positive connectance–stability relationship however necessitates food-web compartmentalization, high defence efficiency and low defence cost, suggesting that it only occurs under a restricted condition.


2018 ◽  
Author(s):  
Charles W Martin ◽  
John F Valentine

Estuaries of the northern Gulf of Mexico contain an abundance of habitat-forming submerged aquatic vegetation (SAV) that provide refuge and protection for a variety of freshwater, estuarine, and marine organisms. However, many of these estuaries now contain numerous exotic species, the ultimate impacts of which are unclear. In the Mobile-Tensaw Delta, located in the upper portion of Mobile Bay, Alabama (USA), Eurasian milfoil (Myriophyllum spicatum, hereafter referred to as Myriophyllum) is now the most dominant submerged macrophyte. Myriophyllum is a structurally-complex macrophyte with the potential to dramatically alter estuarine food webs through reduced encounter rates between predators and their prey and other mechanisms. Previously, we surveyed faunal communities using throw traps, trawls, cores, and suction sampling to compare milfoil assemblages with other native macrophytes to explore the interactive role of hydrology, diel periodicity, and macrophyte presence in influencing community structure. Here, we use this previously collected data to generate a preliminary food web analyses to determine if milfoil, due to its high complexity, creates a "trophic dead end" and limits higher trophic level production. We found the number of nodes, links, linkage density, and connectance to all be greater in milfoil than Vallisneria americana (hereafter referred to as Vallisneria), indicating that a diverse, productive, and highly connected food web exists in this invasive habitat.


2020 ◽  
Author(s):  
Vadim A. Karatayev ◽  
Marissa L. Baskett ◽  
Egbert van Nes

AbstractOverexploitation can lead to a rapid collapse of consumers that is difficult to reverse if ecosystems exhibit alternative stable states. However, support for this phenomenon remains predominantly limited to simple models, whereas food webs might dissipate the feedback loops that create alternative stable states through species-specific demography and interactions. Here we develop a general model of consumer-resource interactions with two types of processes: either specialized feedbacks where individual resources become unpalatable at high abundance or aggregate feedbacks where overall resource abundance reduces consumer recruitment. We then quantify how the degree of interconnectedness and species differences in demography affect the potential for either feedback to produce consumer- or resource-dominated food web states. Our results highlight that such alternative stable states could be more likely to happen when aggregate feedbacks or lower species differences increase redundancy in species contributions to persistence of the consumer guild. Conversely, specialized palatability feedbacks with distinctive species roles in guild persistence reduce the potential for alternative states but increase the likelihood that losing vulnerable consumers cascades into a food web collapse at low stress levels, a fragility absent in few-species models. Altogether, we suggest that species heterogeneity has a greater impact on whether feedbacks prevent consumer recovery than on the presence of many-species collapses.


Author(s):  
Kevin S. McCann

This chapter examines food webs at the landscape scale by focusing on the large-scale food web architecture that is deeply constrained by space. It begins with a discussion of how variability in space, time, and food web structure, coupled with the ability of organisms to rapidly respond to variation, affect the maintenance of the food web and its functions. It then explains how individual traits such as body size and foraging behavior relate to food web structure in space and time. It also considers the role of spatial constraints on food webs and how the existence of fast–slow pathways coupled by mobile adaptive predators gives rise to spatial asynchrony in the resources. The chapter concludes with a review of some empirical examples to show that some food webs display the bird feeder effect and that resource coupling of distinct habitats appears to stabilize food webs.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 336 ◽  
Author(s):  
Ferenc Jordán ◽  
Anett Endrédi ◽  
Wei-chung Liu ◽  
Domenico D’Alelio

Species are embedded in a web of intricate trophic interactions. Understanding the functional role of species in food webs is of fundamental interests. This is related to food web position, so positional similarity may provide information about functional overlap. Defining and quantifying similar trophic functioning can be addressed in different ways. We consider two approaches. One is of mathematical nature involving network analysis where unique species can be defined as those whose topological position is very different to others in the same food web. A species is unique if it has very different connection pattern compared to others. The second approach is of biological nature, based on trait-based aggregations. Unique species are not easy to aggregate with others because their traits are not in common with the ones of most others. Our goal here is to illustrate how mathematics can provide an alternative perspective on species aggregation, and how this is related to its biological counterpart. We illustrate these approaches using a toy food web and a real food web and demonstrate the sensitive relationships between those approaches. The trait-based aggregation focusing on the trait values of size (sv) can be best predicted by the mathematical aggregation algorithms.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2828
Author(s):  
Yulun Guo ◽  
Tao Wang ◽  
García Molinos Jorge ◽  
Huan Zhang ◽  
Peiyu Zhang ◽  
...  

Trophic niches condition the energetic performance of species within food webs providing a vital link between food web assembly, species diversity, and functioning of ecosystems. Our understanding of this important link is, however, limited by the lack of empirical tools that can be easily applied to compare entire food webs at regional scales. By comparison, with different a priori synthetic models defined according to specific assembly rules (i.e., purely random, limiting similarity, and niche filtering), we demonstrate that a set of food web properties (trophic richness, evenness, and divergence) are controlled by ecological processes. We further demonstrate that although both limiting similarity and niche filtering are statistically significant assembly processes shaping our studied lake food webs, their relative importance is richness-dependent, and contextual to the specific food web property under consideration. Our results have both important theoretical and practical implications. Theoretically, the observed richness-dependent variation on food web properties contradicts the common criticism on food web theory that food web properties are roughly scale-invariant. Practically, these properties can help avoiding spurious conclusions, while providing useful information for multiple food web niche spaces supporting the ecosystem functioning.


Sign in / Sign up

Export Citation Format

Share Document