scholarly journals Isoform specific anti-TGFβ therapy enhances antitumor efficacy in mouse models of cancer

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Aditi Gupta ◽  
Sadna Budhu ◽  
Kelly Fitzgerald ◽  
Rachel Giese ◽  
Adam O. Michel ◽  
...  

AbstractTGFβ is a potential target in cancer treatment due to its dual role in tumorigenesis and homeostasis. However, the expression of TGFβ and its inhibition within the tumor microenvironment has mainly been investigated in stroma-heavy tumors. Using B16 mouse melanoma and CT26 colon carcinoma as models of stroma-poor tumors, we demonstrate that myeloid/dendritic cells are the main sources of TGFβ1 and TGFβ3. Depending on local expression of TGFβ isoforms, isoform specific inhibition of either TGFβ1 or TGFβ3 may be effective. The TGFβ signature of CT26 colon carcinoma is defined by TGFβ1 and TGFβ1 inhibition results in tumor delay; B16 melanoma has equal expression of both isoforms and inhibition of either TGFβ1 or TGFβ3 controls tumor growth. Using T cell functional assays, we show that the mechanism of tumor delay is through and dependent on enhanced CD8+ T cell function. To overcome the local immunosuppressive environment, we found that combining TGFβ inhibition with immune checkpoint blockade results in improved tumor control. Our data suggest that TGFβ inhibition in stroma poor tumors shifts the local immune environment to favor tumor suppression.

2019 ◽  
Author(s):  
Fan Zhou ◽  
Justa Kardash ◽  
Hilal Bhat ◽  
Vikas Duhan ◽  
Sarah-Kim Friedrich ◽  
...  

AbstractWith the integration of PD-1 and CTLA-4 targeting immune checkpoint blockade into cancer treatment regimes, the anti-tumoral cytotoxicity of tumor-specific CD8+T cells is well established. However, while the unresponsiveness of CD8+T cells against big tumors is mainly explained by T cell exhaustion, other factors contributing to CD8+T cell failure remain not well studied. Here we used a mouse melanoma model to study the interaction of growing tumor cells, innate immunity and CD8+T cell responses induced by viral replication. Mouse model of melanoma (B16F10-OVA) and infections with arenaviruses. Growing B16F10-OVA cells did not induce systemic ablation of tumor specific CD8+T cells. However, despite the presence of tumor-infiltrating CD8+T cells, the anti-tumoral immune response was very limited. T cell anergy against the tumor was accompanied with a strong down-regulation of MHC-I on advanced tumors. LCMV infection restored the MHC class I expression, enhanced T cell function and lead to tumor regression. This study shows that tumor progression does not necessary lead to systemic exhaustion of the anti-tumoral CD8+T cell response. Lack of innate signals is an additional reason for limited CD8+T cell mediated cytotoxicity against the tumor.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1263
Author(s):  
Paytsar Topchyan ◽  
Gang Xin ◽  
Yao Chen ◽  
Shikan Zheng ◽  
Robert Burns ◽  
...  

In cancer, CD8+ T cells enter a dysfunctional state which prevents them from effectively targeting and killing tumor cells. Tumor-infiltrating CD8+ T cells consist of a heterogeneous population of memory-like progenitor, effector, and terminally exhausted cells that exhibit differing functional and self-renewal capacities. Our recently published work has shown that interleukin (IL)-21-producing CD4+ T cells help to generate effector CD8+ T cells within the tumor, which results in enhanced tumor control. However, the molecular mechanisms by which CD4+ helper T cells regulate the differentiation of effector CD8+ T cells are not well understood. In this study, we found that Basic Leucine Zipper ATF-Like Transcription Factor (BATF), a transcription factor downstream of IL-21 signaling, is critical to maintain CD8+ T cell effector function within the tumor. Using mixed bone marrow chimeras, we demonstrated that CD8+ T cell-specific deletion of BATF resulted in impaired tumor control. In contrast, overexpressing BATF in CD8+ T cells enhanced effector function and resulted in improved tumor control, bypassing the need for CD4+ helper T cells. Transcriptomic analyses revealed that BATF-overexpressing CD8+ T cells had increased expression of costimulatory receptors, effector molecules, and transcriptional regulators, which may contribute to their enhanced activation and effector function. Taken together, our study unravels a previously unappreciated CD4+ T cell-derived IL-21–BATF axis that could provide therapeutic insights to enhance effector CD8+ T cell function to fight cancer.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 842-842
Author(s):  
Sarwish Rafiq ◽  
Hollie J. Jackson ◽  
Oladapo Yeku ◽  
Terence J Purdon ◽  
Dayenne G. van Leeuwen ◽  
...  

Abstract T cell therapies have had valuable clinical responses in patients with cancer. Chimeric antigen receptor (CAR) T cells can be genetically engineered to recognize tumor cells and CAR T cell therapy has shown impressive results in the setting of B cell acute lymphoblastic leukemia but has been less effective in treating other types of hematologic and solid tumors. The inhibitory tumor microenvironment (TME), including expression of ligands that bind inhibitory receptors on T cells, e.g. programmed death receptor 1 (PD-1), can dampen CAR T cell responses. Separately, immune checkpoint blockade therapy involving the disruption of PD-1 and programmed death receptor ligand1 (PD-L1) interaction allows for re-activation of tumor-infiltrating lymphocytes (TIL) to have anti-tumor function. This approach has shown clinical responses in a range of malignancies, but has been less efficacious in poorly immunogenic tumors. To prevent PD-1-mediated dampening of CAR T cell function, we have co-modified CAR T cells to secrete PD-1 blocking single chain variable fragments (scFv). We first designed mouse constructs with which we could investigate the scFv-secreting CAR T cells in the context of a syngeneic immune-competent intact TME. CAR constructs were engineered directed against either human CD19 or MUC-16 (ecto) with mouse signaling domains and a anti-mouse PD-1 scFv. Mouse T cells transduced with these constructs expressed the CAR on the surface and secreted detectable amounts of scFv that bound to mouse PD-1. The scFv-secreting CAR T cells were cytotoxic and produced IFN-g when co-cultured with PD-L1 expressing tumors in vitro . We utilized a syngeneic mouse model to study scFv secreting CAR T cells in a model with an intact TME. In tumor-bearing mice treated with CAR T cells, scFv-secreting CAR T cells enhanced survival as compared to second generation CAR T cells. The survival benefit achieved with scFv-secreting CAR T cells was comparable to that achieved with systemic infusion of PD-1 blocking antibody, but with localized delivery of PD-1 blockade. Mice treated with scFv-secreting CAR T cells had detectable scFv in vivo in the TME. Lastly, long term surviving mice had detectable CAR T cells in the bone marrow by PCR, demonstrating persistence and suggesting an immunological memory. We next aimed to translate PD-1 blocking scFv CAR T cells to a clinically relevant human model utilizing a novel anti-human PD-1 blocking scFv. CAR constructs were engineered with recognition domains directed against human CD19 or MUC-16 (ecto) and human signaling domains. Human T cells modified with the CAR constructs express the CAR on the surface and secrete detectable amounts of PD-1 blocking scFv. The scFv binds to human PD-1 and scFv-secreting CAR T cells are cytotoxic to PD-L1 expressing tumors. Expression of PD-1-blocking scFv enhances CAR T cell function against PD-L1 expressing tumors in xenograft models of hematological and solid tumors by enhancing survival in tumor-bearing mice as compared to second generation CAR T cells. Furthermore, scFv-secreting CAR T cells exhibit in vivo bystander T cell enhancement of function, suggesting scFv-secreting CAR T cells can reactivate endogenous TILs in the TME. These data support the novel concept that localized delivery of scFv by CAR T cells can successfully block PD-1 binding to PD-L1 and work in an autocrine manner to prevent dampening of CAR T cell responses as well as a paracrine manner to activate endogenous tumor infiltrating lymphocytes to enhance the overall anti-tumor efficacy of CAR T cell therapy. Disclosures Curran: Juno Therapeutics: Research Funding; Novartis: Consultancy. Yan: Eureka Therapeutics Inc: Employment. Wang: Eureka Therapeutics Inc.: Employment, Equity Ownership. Xiang: Eureka Therapeutics Inc.: Employment. Liu: Eureka Therpeutics Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Brentjens: Juno Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


2021 ◽  
Author(s):  
Nicole Kirchhammer ◽  
Marcel P Trefny ◽  
Marina Natoli ◽  
Dominik Bruecher ◽  
Sheena N Smith ◽  
...  

Targeting T cells for cancer immunotherapy commonly fails to generate lasting tumor control. Harnessing additional orchestrators of the immune response against tumors may enhance and broaden clinical benefit. Here, we demonstrate that therapeutic targeting of the IFNγ-IL-12 pathway relies on the amplification of anti-tumoral DC-T cell crosstalk by NK cells. Utilizing an engineered adenoviral platform for paracrine delivery into the tumor microenvironment, we show that IL-12 enhances functional DC-CD8 T cell interactions to generate profound anti-tumor immunity. This effect depends on the abundance of intra-tumoral NK cells and specifically their capacity to produce the DC chemoattractant CCL5. Failure to respond to IL-12 and other IFNγ-inducing therapies such as immune checkpoint blockade can be overcome by intra-tumoral therapeutic delivery of CCL5 resulting in the recruitment of cDC1s. Our findings reveal novel mechanistic insights how to enhance T cell-NK cell-DC crosstalks, enforcing a tumor-eliminating positive feedback mechanism to promote anti-tumor immunity and overcome resistance.


2015 ◽  
Vol 94 (1) ◽  
pp. 90-100 ◽  
Author(s):  
Simon Gebremeskel ◽  
Drew Slauenwhite ◽  
Brent Johnston

2020 ◽  
Author(s):  
J.R. Rivas ◽  
S.S. Alhakeem ◽  
Y. Liu ◽  
J.M. Eckenrode ◽  
F. Marti ◽  
...  

AbstractT-cell dysfunction is a hallmark of B-cell Chronic Lymphocytic Leukemia (CLL). CLL cells downregulate T-cell responses by expressing regulatory molecules including programmed death ligand-1 (PD-L1) and Interleukin-10 (IL-10). Immune checkpoint blockade (ICB) aims to restore T-cell function by preventing the ligation of inhibitory receptors like PD-1, however most CLL patients do not respond well to this therapy. Thus, we investigated whether IL-10 suppression could enhance antitumor T-cell activity and improve responses to ICB. Since CLL IL-10 expression depends on Sp1, we utilized a novel, better tolerated mithramycin analogue, MTMox32E, to suppress CLL IL-10. We found MTMox32E inhibited mouse and human CLL IL-10 production and maintained T-cell effector function. In the Eμ-Tcl1 mouse model, treatment reduced plasma IL-10 and CLL burden while it increased CD8+ T-cell proliferation, effector and memory cell prevalence, and interferon-γ production. When combined with ICB, suppression of IL-10 improved responses to anti-PD-L1 as shown by a 4.5-fold decrease in CLL cell burden compared with anti-PD-L1 alone. Combination therapy also produced more interferon-γ+, cytotoxic effector KLRG1+, and memory CD8+ T-cells, with fewer exhausted T-cells than ICB alone. Since current therapies for CLL do not target IL-10, this provides a novel strategy to increase the efficacy of T-cell-based immunotherapies.


2008 ◽  
Vol 181 (7) ◽  
pp. 4976-4988 ◽  
Author(s):  
Alexey Popov ◽  
Julia Driesen ◽  
Zeinab Abdullah ◽  
Claudia Wickenhauser ◽  
Marc Beyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document