scholarly journals Templated interfacial synthesis of metal-organic framework (MOF) nano- and micro-structures with precisely controlled shapes and sizes

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lingyao Meng ◽  
Binyu Yu ◽  
Yang Qin

AbstractMetal-organic frameworks (MOF) are an emerging class of microporous materials with promising applications. MOF nanocrystals, and their assembled super-structures, can display unique properties and reactivities when compared with their bulk analogues. MOF nanostructures of 0-D, 2-D, and 3-D dimensions can be routinely obtained by controlling reaction conditions and ligand additives, while formation of 1-D MOF nanocrystals (nanowires and nanorods) and super-structures has been relatively rare. We report here a facile templated interfacial synthesis methodology for the preparation of a series of 1-D MOF nano- and micro-structures with precisely controlled shapes and sizes. Specifically, by applying track-etched polycarbonate (PCTE) membranes as the templates and at the oil/water interface, we rapidly and reproducibly synthesize zeolitic imidazolate framework-8 (ZIF-8) and ZIF-67 nano- and micro structures of sizes ranging from 10 nm to 20 μm. We also identify a size confinement effect on MOF crystal growth, which leads to single crystals under the most restricted conditions and inter-grown polycrystals at larger template pore sizes, as well as surface directing effects that influence the crystallographic preferred orientation. Our findings provide a potentially generalizable method for controlling the size, morphology, and crystal orientations of MOF nanomaterials, as well as offering fundamental understanding into MOF crystal growth mechanisms.

Catalysts ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 315 ◽  
Author(s):  
Yanmei Zhang ◽  
Xiang Zhang ◽  
Rixia Bai ◽  
Xiyan Hou ◽  
Jun Li

It is desirable but challenging to locate solid catalysts at the oil-water interface to stabilize “Pickering emulsions”, which is one of the promising ways to develop efficient green chemical processes. Herein, water-stable metal organic framework ZIF-8 without any chemical modification was demonstrated to be an interface-active catalyst for Knoevenagel condensation in a biphasic system. Pickering emulsion formed under the reaction conditions due to its amphiphilic property, which was beneficial to the mass transfer and led to high catalytic performance. Moreover, it can be repeatedly applied for Knoevenagel condensation for at least six successive cycles without losing its catalytic activity and framework integrity.


2021 ◽  
Author(s):  
Fajar Inggit Pambudi ◽  
Michael William Anderson ◽  
Martin Attfield

Atomic force microscopy has been used to determine the surface crystal growth of two isostructural metal-organic frameworks, [Zn2(ndc)2(dabco)] (ndc = 1,4-naphthalene dicarboxylate, dabco = 4-diazabicyclo[2.2.2]octane) (1) and [Cu2(ndc)2(dabco)] (2) from...


2017 ◽  
Vol 5 (35) ◽  
pp. 18823-18830 ◽  
Author(s):  
Seung-Keun Park ◽  
Jin Koo Kim ◽  
Yun Chan Kang

Multishell structured metal selenide nanocubes, namely, Co/(NiCo)Se2 box-in-box structures with different shell compositions, were successfully synthesized by applying zeolitic imidazolate framework-67 (ZIF-67) as a template.


2021 ◽  
Author(s):  
Meng Ge ◽  
Yanzhi Wang ◽  
Francesco Carraro ◽  
Weibin Liang ◽  
Morteza Roostaeinia ◽  
...  

<p>Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1<a>, </a>was first discovered in a trace amount during the study of a known ZIF-CO<sub>3</sub>-1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm<sup>-</sup>). With a composition of Zn<sub>3</sub>(mIm)<sub>5</sub>(OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalysis for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications. </p>


2022 ◽  
Author(s):  
Chen Chen ◽  
Lei Nie ◽  
Yizhe Huang ◽  
Shuang Xi ◽  
Xingyue Liu ◽  
...  

Abstract Herein, we develop a novel strategy for preparing all-inorganic cesium lead halide (CsPbX3, X= Cl, Br, I) perovskite nanocrystals (NCs)@Zn-based metal-organic framework (MOF) composites through interfacial synthesis. The successful embedding of fluorescent perovskite NCs in Zn-MOFs is due to the in-situ confined growth, which is attributed to the re-nucleation of water-triggered phase transformation from Cs4PbBr6 to CsPbBr3. The controllable synthesis of mixed-halide based composites with various emission wavelength can be achieved by adding the desired amount of halide (Cl or I) salts in the re-nucleation process. More importantly, the anion exchange reaction is inhibited among various composites with different halogen atoms by being trapped in MOFs. Besides, a white light-emitting diode (WLED) is produced using a blue LED chip with the green-emitting and red-emitting composites, which has a color coordinate of (0.3291, 0.3272) and a wide color gamut. This work provides a novel route to achieving perovskite NCs growth in MOFs, which also can be extended to the other NCs embedded in frames as well.


Science ◽  
2020 ◽  
Vol 367 (6485) ◽  
pp. 1473-1476 ◽  
Author(s):  
Rasmus S. K. Madsen ◽  
Ang Qiao ◽  
Jishnu Sen ◽  
Ivan Hung ◽  
Kuizhi Chen ◽  
...  

The structure of melt-quenched zeolitic imidazole framework (ZIF) glasses can provide insights into their glass-formation mechanism. We directly detected short-range disorder in ZIF glasses using ultrahigh-field zinc-67 solid-state nuclear magnetic resonance spectroscopy. Two distinct Zn sites characteristic of the parent crystals transformed upon melting into a single tetrahedral site with a broad distribution of structural parameters. Moreover, the ligand chemistry in ZIFs appeared to have no controlling effect on the short-range disorder, although the former affected their phase-transition behavior. These findings reveal structure-property relations and could help design metal-organic framework glasses.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 34 ◽  
Author(s):  
Seong Huh

The reduction of the representative greenhouse gas, carbon dioxide (CO2), is significantly an important theme for the current research in the modern chemical world. For the last two decades, the development of new metal-organic framework (MOF) systems with highly selective capture of CO2, in the presence of other competing gaseous molecules, has flourished to capture or separate CO2 for environmental protection. Nonetheless, the ultimate resolution to lessen the atmospheric CO2 concentration may be in the chemical or electrochemical conversion of CO2 to other compounds. In this context, the catalytic cycloaddition reaction of CO2 into organic epoxides to produce cyclic carbonates is a more attractive method. MOFs are being proven as efficient heterogeneous catalytic systems for this important reaction. In this review, we collected very recent progress in MOF-based catalytic systems, fully operable under very mild reaction conditions (room temperature and 1 atm CO2).


Sign in / Sign up

Export Citation Format

Share Document