scholarly journals Recombinant collagen polypeptide as a versatile bone graft biomaterial

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Hideo Fushimi ◽  
Takahiro Hiratsuka ◽  
Ai Okamura ◽  
Yoshitaka Ono ◽  
Izumi Ogura ◽  
...  

AbstractAutografts and allografts are currently considered the gold standard for grafting surgery; however, to meet the growing demand in fast-aging societies, synthetic biomaterials will play an increasingly important role. Here we report a biodegradable scaffold material composed of recombinant polypeptide based on the human type I collagen alpha 1 chain (RCPhC1) as a source of hydrogel-based graft materials. The flexibility to engineer ideal characteristics for bone grafts was demonstrated. The critical internal isotropic pore structure was generated through a designed thin-layer freeze casting process. The optimized biodegradation rate was controlled by dehydrothermal crosslinking by adjusting the amino acid composition of RCPhC1. As a result, RCPhC1 bone grafts manufactured by a highly scalable streamlined production protocol induced robust regeneration of mature bone tissue while being completely resorbed in pre-clinical animal models.

2020 ◽  
Author(s):  
Jianan Ouyang ◽  
Zhenhan Deng ◽  
Kang Chen ◽  
Jianyi Xiong ◽  
Ying Li ◽  
...  

Abstract [Objective] To determine the cellular compatibility of porous tantalum-niobium (Ta-Nb) material. [Method] Rabbit osteoblasts were co-cultured with porous Ta-Nb material. The cell proliferation was detected by CCK-8 method, and the cell adhesion was observed under scanning electron microscope (SEM). The expressions of type-I collagen and osteocalcin were detected by RT-PCR assay. [Results] CCK-8 detection indicated that the cell proliferation on the porous Ta-Nb material showed no difference from that of the control group (P>0.05). SEM revealed that a large amount of cells adhered onto the surface and in the pores of the material. The number of cells on the material surface increased obviously over time. RT-PCR assay showed that with the prolonging of the time of co-culture, the expression of type-I collagen was enhanced (P<0.05), while the osteocalcin expression exhibited no significant difference (P>0.05[Conclusion] Porous Ta-Nb scaffold material can be used to promote the adhesion, growth and differentiation of osteoblasts with satisfactory cellular compatibility.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Riho Kanai ◽  
Shinichiro Kuroshima ◽  
Michimasa Kamo ◽  
Muneteru Sasaki ◽  
Yusuke Uto ◽  
...  

Abstract Background To explore the effects of topographical modification of titanium substrates at submicron level by oxalic acid treatment on bone quality and quantity around dental implants in rabbit tibiae. Methods A total of 60 blasted CP-grade IV titanium dental implants were used. Twenty-eight control implant surfaces were treated with a mixture of HCl/H2SO4, whereas 28 other test implant surfaces were treated with oxalic acid following HCl/H2SO4 treatment. Two randomly selected sets of control or test implants were placed in randomly selected proximal tibiae of 14 female Japanese white rabbits. Euthanasia was performed 4 and 8 weeks post-implant placement. Bone to implant contact (BIC), bone area fraction (BAF), ratios of mature and immature bone to total bone, and the amount and types of collagen fibers were evaluated quantitatively. Two control and two test implants were used to analyze surface characteristics. Results Treatment by oxalic acid significantly decreased Sa and increased Ra of test implant surfaces. BIC in test implants was increased without alteration of BAF and collagen contents at 4 and 8 weeks after implant placement when compared with control implants. The ratios of immature and mature bone to total bone differed significantly between groups at 4 weeks post-implantation. Treatment by oxalic acid increased type I collagen and decreased type III collagen in bone matrices around test implants when compared with control implants at 8 weeks after implant placement. The effects of topographical changes of implant surfaces induced by oxalic acid on BAF, mature bone, collagen contents, and type I collagen were significantly promoted with decreased immature bone formation and type III collagen in the later 4 weeks post-implantation. Conclusions Treatment of implant surfaces with oxalic acid rapidly increases osseointegration from the early stages after implantation. Moreover, submicron topographical changes of dental implants induced by oxalic acid improve bone quality based on bone maturation and increased production of type I collagen surrounding dental implants in the late stage after implant placement.


Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


2007 ◽  
Vol 177 (4S) ◽  
pp. 314-314 ◽  
Author(s):  
Joon-Yang Kim ◽  
Hoon Seog Jean ◽  
Beom Joon Kim ◽  
Kye Yong Song

Sign in / Sign up

Export Citation Format

Share Document