scholarly journals Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities

Nature Aging ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 87-100 ◽  
Author(s):  
Xiuying Zhang ◽  
Huanzi Zhong ◽  
Yufeng Li ◽  
Zhun Shi ◽  
Huahui Ren ◽  
...  
2019 ◽  
Author(s):  
Xiuying Zhang ◽  
Huanzi Zhong ◽  
Yufeng Li ◽  
Zhun Shi ◽  
Zhe Zhang ◽  
...  

AbstractA decade of studies has established the importance of the gut microbiome in human health. In spite of sex differences in the physiology, lifespan, and prevalence of many age-associated diseases, sex and age disparities in the gut microbiota have been little studied. Here we show age-related sex differences in the adult gut microbial composition and functionality in two community-based cohorts from Northern China and the Netherlands. Consistently, women harbour a more diverse and stable microbial community across broad age ranges, whereas men exhibit a more variable gut microbiota strongly correlated with age. Reflecting the sex-biased age-gut microbiota interaction patterns, sex differences observed in younger adults are considerably reduced in the elderly population. Our findings highlight the age- and sex-biased differences in the adult gut microbiota across two ethnic population and emphasize the need for considering age and sex in studies of the human gut microbiota.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Congmin Xu ◽  
Huaiqiu Zhu ◽  
Peng Qiu

Abstract Background Human gut microbiota are important for human health and have been regarded as a “forgotten organ”, whose variation is closely linked with various factors, such as host genetics, diet, pathological conditions and external environment. The diversity of human gut microbiota has been correlated with aging, which was characterized by different abundance of bacteria in various age groups. In the literature, most of the previous studies of age-related gut microbiota changes focused on individual species in the gut community with supervised methods. Here, we aimed to examine the underlying aging progression of the human gut microbial community from an unsupervised perspective. Results We obtained raw 16S rRNA sequencing data of subjects ranging from newborns to centenarians from a previous study, and summarized the data into a relative abundance matrix of genera in all the samples. Without using the age information of samples, we applied an unsupervised algorithm to recapitulate the underlying aging progression of microbial community from hosts in different age groups and identify genera associated to this progression. Literature review of these identified genera indicated that for individuals with advanced ages, some beneficial genera are lost while some genera related with inflammation and cancer increase. Conclusions The multivariate unsupervised analysis here revealed the existence of a continuous aging progression of human gut microbiota along with the host aging process. The identified genera associated to this aging process are meaningful for designing probiotics to maintain the gut microbiota to resemble a young age, which hopefully will lead to positive impact on human health, especially for individuals in advanced age groups.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1006
Author(s):  
Lei Wu ◽  
Xinqiang Xie ◽  
Ying Li ◽  
Tingting Liang ◽  
Haojie Zhong ◽  
...  

Antibiotic resistance in bacteria has become a major global health problem. One of the main reservoirs of antibiotic resistance genes is the human gut microbiota. To characterise these genes, a metagenomic approach was used. In this study, a comprehensive antibiotic resistome catalog was established using fecal samples from 246 healthy individuals from world’s longevity township in Jiaoling, China. In total, 606 antibiotic resistance genes were detected. Our results indicated that antibiotic resistance genes in the human gut microbiota accumulate and become more complex with age as older groups harbour the highest abundance of these genes. Tetracycline resistance gene type tetQ was the most abundant group of antibiotic resistance genes in gut microbiota, and the main carrier of antibiotic resistance genes was Bacteroides. Antibiotic efflux, inactivation, and target alteration were found to be the dominant antimicrobial resistance mechanisms. This research may help to establish a comprehensive antibiotic resistance catalog that includes extremely long-lived healthy people such as centenarians, and may provide potential recommendations for controlling the use of antibiotics.


Molecules ◽  
2016 ◽  
Vol 21 (8) ◽  
pp. 1034 ◽  
Author(s):  
Pilar Gaya ◽  
Margarita Medina ◽  
Abel Sánchez-Jiménez ◽  
José Landete

2019 ◽  
Author(s):  
Xiuying Zhang ◽  
Huanzi Zhong ◽  
Yufeng Li ◽  
Zhun Shi ◽  
Zhe Zhang ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

2017 ◽  
Author(s):  
EM Pferschy-Wenzig ◽  
A Roßmann ◽  
K Koskinen ◽  
H Abdel-Aziz ◽  
C Moissl-Eichinger ◽  
...  

2020 ◽  
Author(s):  
Y Liu ◽  
AL Heath ◽  
B Galland ◽  
N Rehrer ◽  
L Drummond ◽  
...  

© 2020 American Society for Microbiology. Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, β-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order β-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and β-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula. Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology. This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.


Sign in / Sign up

Export Citation Format

Share Document