scholarly journals Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX

2004 ◽  
Vol 23 (4) ◽  
pp. 690-700 ◽  
Author(s):  
C Alistair Siebert ◽  
Pu Qian ◽  
Dimitrios Fotiadis ◽  
Andreas Engel ◽  
C Neil Hunter ◽  
...  
Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Iwona Sadura ◽  
Dariusz Latowski ◽  
Jana Oklestkova ◽  
Damian Gruszka ◽  
Marek Chyc ◽  
...  

Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and development and modulate their reaction against many environmental stresses including temperature stress, but their role in modifying the properties of the biological membrane is poorly known. In this paper, we characterise the molecular dynamics of chloroplast membranes that had been isolated from wild-type and a BR-deficient barley mutant that had been acclimated to low and high temperatures in order to enrich the knowledge about the role of BR as regulators of the dynamics of the photosynthetic membranes. The molecular dynamics of the membranes was investigated using electron paramagnetic resonance (EPR) spectroscopy in both a hydrophilic and hydrophobic area of the membranes. The content of BR was determined, and other important membrane components that affect their molecular dynamics such as chlorophylls, carotenoids and fatty acids in these membranes were also determined. The chloroplast membranes of the BR-mutant had a higher degree of rigidification than the membranes of the wild type. In the hydrophilic area, the most visible differences were observed in plants that had been grown at 20 °C, whereas in the hydrophobic core, they were visible at both 20 and 5 °C. There were no differences in the molecular dynamics of the studied membranes in the chloroplast membranes that had been isolated from plants that had been grown at 27 °C. The role of BR in regulating the molecular dynamics of the photosynthetic membranes will be discussed against the background of an analysis of the photosynthetic pigments and fatty acid composition in the chloroplasts.


2000 ◽  
Vol 182 (12) ◽  
pp. 3475-3481 ◽  
Author(s):  
Jung Hyeob Roh ◽  
Samuel Kaplan

ABSTRACT Previously, we reported that rdxB, encoding a likely membrane-bound two [4Fe-4S]-containing center, is involved in the aerobic regulation of photosystem gene expression in Rhodobacter sphaeroides 2.4.1. To further investigate the role ofrdxB as well as other genes of the rdxBHISoperon on photosystem gene expression, we constructed a series of nonpolar, in-frame deletion mutations in each of the rdxgenes. Using both puc and puf operonlacZ fusions to monitor photosystem gene expression, under aerobic conditions, in each of the mutant strains revealed significant increased photosynthesis gene expression. In the case of mutations in either rdxH, rdxI, or rdxS, the aerobic induction of photosystem gene expression is believed to be indirect by virtue of a posttranscriptional effect oncbb 3 cytochrome oxidase structure and integrity. For RdxB, we suggest that this redox protein has a more direct effect on photosystem gene expression by virtue of its interaction with the cbb 3 oxidase. An associated phenotype, involving the enhanced conversion of the carotenoid spheroidene to spheroidenone, is also observed in the RdxB, -H, -I, and -S mutant strains. This phenotype is also suggested to be the result of the role of the rdxBHIS locus incbb 3 oxidase activity and/or structure. RdxI is suggested to be a new class of metal transporter of the CPx-type ATPases.


Open Biology ◽  
2014 ◽  
Vol 4 (2) ◽  
pp. 130217 ◽  
Author(s):  
Puneet Sharma ◽  
Alo Nag

The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed.


Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 387 ◽  
Author(s):  
Maurizio Francesco Brivio ◽  
Maristella Mastore

Currently, potentially harmful insects are controlled mainly by chemical synthetic insecticides, but environmental emergencies strongly require less invasive control techniques. The use of biological insecticides in the form of entomopathogenic organisms is undoubtedly a fundamental resource for the biological control of insect pests in the future. These infectious agents and endogenous parasites generally act by profoundly altering the host’s physiology to death, but their success is closely related to the neutralization of the target insect’s immune response. In general, entomopathogen parasites, entomopathogenic bacteria, and fungi can counteract immune processes through the effects of secretion/excretion products that interfere with and damage the cells and molecules typical of innate immunity. However, these effects are observed in the later stages of infection, whereas the risk of being recognized and neutralized occurs very early after penetration and involves the pathogen surface components and molecular architecture; therefore, their role becomes crucial, particularly in the earliest pathogenesis. In this review, we analyze the evasion/interference strategies that entomopathogens such as the bacterium Bacillus thuringiensis, fungi, nematocomplexes, and wasps implement in the initial stages of infection, i.e., the phases during which body or cell surfaces play a key role in the interaction with the host receptors responsible for the immunological discrimination between self and non-self. In this regard, these organisms demonstrate evasive abilities ascribed to their body surface and cell wall; it appears that the key process of these mechanisms is the capability to modify the surface, converting it into an immunocompatible structure, or interaction that is more or less specific to host factors.


Sign in / Sign up

Export Citation Format

Share Document