scholarly journals The Alpha2-Adrenoceptor Antagonist Dexefaroxan Enhances Hippocampal Neurogenesis by Increasing the Survival and Differentiation of New Granule Cells

2005 ◽  
Vol 31 (6) ◽  
pp. 1146-1157 ◽  
Author(s):  
Pamela Rizk ◽  
Julio Salazar ◽  
Rita Raisman-Vozari ◽  
Marc Marien ◽  
Merle Ruberg ◽  
...  
1984 ◽  
Vol 36 ◽  
pp. 243
Author(s):  
Kyozo Yamanaka ◽  
Masafumi Oshita ◽  
Shigeru Kigoshi ◽  
Ikunobu Muramatsu

Life Sciences ◽  
1983 ◽  
Vol 32 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Jeffrey M. Liebman ◽  
Richard A. Lovell ◽  
Albert Braunwalder ◽  
George Stone ◽  
Patrick Bernard ◽  
...  

1995 ◽  
Vol 9 (3) ◽  
pp. 248-254 ◽  
Author(s):  
H. Bagheri ◽  
JJ Chale ◽  
LN Guyen ◽  
MA Tran ◽  
M. Berlan ◽  
...  

1997 ◽  
Vol 87 (4) ◽  
pp. 963-967 ◽  
Author(s):  
Kiyokazu Kagawa ◽  
Tadanori Mammoto ◽  
Yukio Hayashi ◽  
Takahiko Kamibayashi ◽  
Takashi Mashimo ◽  
...  

Background Recent evidences have documented that several pharmacologic actions of alpha2-adrenoceptor agonists are mediated via activation of not only alpha2-adrenoceptors, but also by imidazoline receptors, which are nonadrenergic receptors in the central nervous system. However, the effect of imidazoline receptors on the anesthesia is not well known, and it is important to clarify the effects of both receptors on anesthesia. Methods Seventy-two rats were anesthetized with halothane, and the anesthetic requirement for halothane was evaluated as minimum alveolar concentration (MAC). The MAC for halothane was determined in the presence of dexmedetomidine (0, 10, 20, and 30 microg/kg, intraperitoneally [IP]), a selective alpha2-adrenoceptor agonist with weak affinity for imidazoline receptors. Then, the authors evaluated the inhibitory effect of rauwolscine (20 mg/kg, IP), an alpha2-adrenoceptor antagonist with little affinity for imidazoline receptors, on the MAC-reducing action of dexmedetomidine (30 microg/kg). Further, the effect of rilmenidine (20, 50, 100, 1000 microg/kg, IP), a selective imidazoline receptor agonist, on the MAC for halothane was also investigated. Results Dexmedetomidine decreased the MAC for halothane dose-dependently, and this MAC-reducing action of dexmedetomidine was completely blocked by rauwolscine. Rilmenidine alone did not change the MAC for halothane. Conclusions The present data indicate that the anesthetic sparing action of dexmedetomidine is most likely mediated through alpha2- adrenoceptors, and the stimulation of imidazoline receptors exerts little effect on the anesthetic requirement for halothane.


2021 ◽  
Vol 22 (17) ◽  
pp. 9545
Author(s):  
Rubén Darío Castro-Torres ◽  
Jordi Olloquequi ◽  
Miren Etchetto ◽  
Pablo Caruana ◽  
Luke Steele ◽  
...  

(1) Background: The c-Jun-NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase involved in regulating physiological processes in the central nervous system. However, the dual genetic deletion of Mkk4 and Mkk7 (upstream activators of JNK) in adult mice is not reported. The aim of this study was to induce the genetic deletion of Mkk4/Mkk7 in adult mice and analyze their effect in hippocampal neurogenesis. (2) Methods: To achieve this goal, Actin-CreERT2 (Cre+/−), Mkk4flox/flox, Mkk7flox/flox mice were created. The administration of tamoxifen in these 2-month-old mice induced the gene deletion (Actin-CreERT2 (Cre+/−), Mkk4∆/∆, Mkk7∆/∆ genotype), which was verified by PCR, Western blot, and immunohistochemistry techniques. (3) Results: The levels of MKK4/MKK7 at 7 and 14 days after tamoxifen administration were not eliminated totally in CNS, unlike what happens in the liver and heart. These data could be correlated with the high levels of these proteins in CNS. In the hippocampus, the deletion of Mkk4/Mkk7 induced a misalignment position of immature hippocampal neurons together with alterations in their dendritic architecture pattern and maturation process jointly to the diminution of JNK phosphorylation. (4) Conclusion: All these data supported that the MKK4/MKK7–JNK pathway has a role in adult neurogenic activity.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
María Belén Pardi ◽  
Mora Belén Ogando ◽  
Alejandro F Schinder ◽  
Antonia Marin-Burgin

Adult hippocampal neurogenesis provides the dentate gyrus with heterogeneous populations of granule cells (GC) originated at different times. The contribution of these cells to information encoding is under current investigation. Here, we show that incoming spike trains activate different populations of GC determined by the stimulation frequency and GC age. Immature GC respond to a wider range of stimulus frequencies, whereas mature GC are less responsive at high frequencies. This difference is dictated by feedforward inhibition, which restricts mature GC activation. Yet, the stronger inhibition of mature GC results in a higher temporal fidelity compared to that of immature GC. Thus, hippocampal inputs activate two populations of neurons with variable frequency filters: immature cells, with wide‐range responses, that are reliable transmitters of the incoming frequency, and mature neurons, with narrow frequency response, that are precise at informing the beginning of the stimulus, but with a sparse activity.


1990 ◽  
Vol 52 ◽  
pp. 169
Author(s):  
Akiko Dohbutsu ◽  
Hakubun Inoue ◽  
Nobuyoshi Hayashi ◽  
Toru R. Saito ◽  
Kunie Kamata ◽  
...  

2005 ◽  
Vol 5 (6) ◽  
pp. 231-233 ◽  
Author(s):  
Jack M. Parent

Continuous Cytosine-β-D-arabinofuranoside Infusion Reduces Ectopic Granule Cells in Adult Rat Hippocampus with Attenuation of Spontaneous Recurrent Seizures Following Pilocarpine-induced Status Epilepticus Jung KH, Chu K, Kim M, Jeong SW, Song YM, Lee ST, Kim JY, Lee SK, Roh JK Eur J Neurosci 2004;19(12):3219–3226 Brief or prolonged seizures induce various patterns of plasticity. Axonal or dendritic remodeling and development of ectopic granule cells have been described in the hilus and molecular layer of the adult rodent hippocampus. Hippocampal cell proliferation also occurs after seizures. However, whether the seizure-induced cell proliferation plays a pathologic or reparative role in the epileptic brain is unknown. In this study, we attempted to suppress the seizure-induced cell proliferation with the antimitotic agent cytosine- β-D-arabinofuranoside (Ara-C) and to examine the development of spontaneous recurrent seizures (SRSs). Experimental status epilepticus was induced with pilocarpine, and Ara-C or vehicle alone was infused continuously with an osmotic minipump. SRSs were video-monitored. Bromodeoxyuridine (BrdU) immunohistochemistry was used for the spatial and temporal analysis of hippocampal cell proliferation, and double labeling with NeuN, calbindin, and glial fibrillary acidic protein (GFAP) antibodies was performed for the differentiation of BrdU-positive cells. Timm staining also was performed for evaluation of mossy-fiber sprouting (MFS). With continuous Ara-C infusion, the likelihood of developing SRSs was decreased, and during the latent period, the development of ectopic granule cells in the hilus and new glia in the CA1 area was reduced when compared with that in the vehicle-infused group, whereas MFS was not altered. The results suggest that the hippocampal cell proliferation plays a proepileptogenic role rather than a compensatory role, and that the epileptogenic process may be associated with the generation of new glia in the CA1 area or new neurons in the dentate gyrus, particularly the ectopically located hilar granule cells, or both. Increased Neurogenesis and the Ectopic Granule Cells after Intrahippocampal BDNF Infusion in Adult Rats Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S Exp Neurol 2005;192(2):348–356 Evidence suggests that brain-derived neurotrophic factor (BDNF) influences the birth of granule cells in the dentate gyrus, which is one of the few areas of the brain that demonstrates neurogenesis throughout life. However, studies to date have not examined this issue directly. To do so, we compared the effects of BDNF, phosphate-buffered saline (PBS), or bovine serum albumin (BSA) on neurogenesis after infusion into the hippocampus of the normal adult rat, by using osmotic pumps that were implanted unilaterally in the dorsal hilus. BDNF, PBS, and BSA were infused for 2 weeks. The mitotic marker BrdU was administered twice daily during the 2-week infusion period. At least 1 month after infusion ended, brains were processed immunocytochemically by using antibodies to BrdU, a neuronal nuclear protein (NeuN), or calbindin D28K (CaBP), which labels mature granule cells. Stereology was used to quantify BrdU-labeled cells in the dorsal hippocampus that were double-labeled with NeuN or CaBP. A statistically significant increase in BrdU+/NeuN+ double-labeled cells was noted in the granule cell layer after BDNF infusion, relative to that in controls. The values for BrdU+/NeuN+ cells were similar to those for BrdU+/CaBP+ cells, indicating that most new neurons were likely to be granule cells. In addition, BrdU+/NeuN+-labeled cells developed in the hilar region after BDNF infusion; these have previously been identified only after severe continuous seizures (status epilepticus) and associated pathologic changes. Remarkably, neurogenesis also was increased contralaterally, but BDNF did not appear to spread to the opposite hemisphere. Thus, infusion of BDNF to a local area can have widespread effects on hippocampal neurogenesis. The results demonstrate that BDNF administration to the dentate gyrus leads to increased neurogenesis of granule cells. They also show that ectopic granule cells develop after BDNF infusion, which suggests that ectopic migration is not necessarily confined to pathologic conditions. These results are discussed in light of the evidence that BDNF increases neuronal activity in hippocampus. Thus, the mechanisms underlying neurogenesis after BDNF infusion could be due to altered activity as well as to direct effects of BDNF itself, and this is relevant to studies of other growth factors because many of them have effects on neuronal excitability that are often not considered.


Sign in / Sign up

Export Citation Format

Share Document