scholarly journals Genomic organization of the crested ibis MHC provides new insight into ancestral avian MHC structure

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Li-Cheng Chen ◽  
Hong Lan ◽  
Li Sun ◽  
Yan-Li Deng ◽  
Ke-Yi Tang ◽  
...  

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Anne Fischer ◽  
Ivette Santana-Cruz ◽  
Lillian Wambua ◽  
Cassandra Olds ◽  
Charles Midega ◽  
...  

Phytoplasmas are bacterial plant pathogens with devastating impact on agricultural production worldwide. In eastern Africa, Napier grass stunt disease causes serious economic losses in the smallholder dairy industry. This draft genome sequence of “ Candidatus Phytoplasma oryzae” strain Mbita1 provides insight into its genomic organization and the molecular basis of pathogenicity.



BMC Genomics ◽  
2005 ◽  
Vol 6 (1) ◽  
Author(s):  
Peter ND Hunt ◽  
Michael D Wilson ◽  
Kristian R von Schalburg ◽  
William S Davidson ◽  
Ben F Koop


2009 ◽  
Vol 9 (1) ◽  
pp. 164-172 ◽  
Author(s):  
Mahdi Arzanlou ◽  
Pedro W. Crous ◽  
Lute-Harm Zwiers

ABSTRACT The devastating Sigatoka disease complex of banana is primarily caused by three closely related heterothallic fungi belonging to the genus Mycosphaerella: M. fijiensis, M. musicola, and M. eumusae. Previous phylogenetic work showing common ancestry led us to analyze the mating-type loci of these Mycosphaerella species occurring on banana. We reasoned that this might provide better insight into the evolutionary history of these species. PCR and chromosome-walking approaches were used to clone the mating-type loci of M. musicola and M. eumusae. Sequences were compared to the published mating-type loci of M. fijiensis and other Mycosphaerella spp., and a novel organization of the MAT loci was found. The mating-type loci of the examined Mycosphaerella species are expanded, containing two additional Mycosphaerella-specific genes in a unique genomic organization. The proteins encoded by these novel genes show a higher interspecies than intraspecies homology. Moreover, M. fijiensis, M. musicola, and M. eumusae contain two additional mating-type-like loci, containing parts of both MAT 1-1-1 and MAT 1-2-1. The data indicate that M. fijiensis, M. musicola, and M. eumusae share an ancestor in which a fusion event occurred between MAT 1-1-1 and MAT 1-2-1 sequences and in which additional genes became incorporated into the idiomorph. The new genes incorporated have since then evolved independently in the MAT1-1 and MAT1-2 loci. Thus, these data are an example of the evolutionary dynamics of fungal MAT loci in general and show the great flexibility of the MAT loci of Mycosphaerella species in particular.



Peptides ◽  
2005 ◽  
Vol 26 (12) ◽  
pp. 2427-2433 ◽  
Author(s):  
Feng Luo ◽  
Xian-Chun Zeng ◽  
Richard Hahin ◽  
Zhi-Jian Cao ◽  
Hui Liu ◽  
...  


2020 ◽  
Vol 8 (12) ◽  
pp. 1900
Author(s):  
Phillip Seitzer ◽  
Andrew I. Yao ◽  
Ariana Cisneros ◽  
Marc T. Facciotti

Operons are a dominant feature of bacterial and archaeal genome organization. Numerous investigations have related aspects of operon structure to operon function, making operons exemplars for studies aimed at deciphering Nature’s design principles for genomic organization at a local scale. We consider this understanding to be both fundamentally important and ultimately useful in the de novo design of increasingly complex synthetic circuits. Here we analyze the evolution of the genomic context of operon-like structures in a set of 76 sequenced and annotated species of halophilic archaea. The phylogenetic depth and breadth of this dataset allows insight into changes in operon-like structures over shorter evolutionary time scales than have been studied in previous cross-species analysis of operon evolution. Our analysis, implemented in the updated software package JContextExplorer finds that operon-like context as measured by changes in structure frequently differs from a sequence divergence model of whole-species phylogeny and that changes seem to be dominated by the exploration of novel regulatory relationships.



2019 ◽  
Vol 20 (18) ◽  
pp. 4657 ◽  
Author(s):  
Mandary ◽  
Masomian ◽  
Poh

RNA viruses are known to replicate by low fidelity polymerases and have high mutation rates whereby the resulting virus population tends to exist as a distribution of mutants. In this review, we aim to explore how genetic events such as spontaneous mutations could alter the genomic organization of RNA viruses in such a way that they impact virus replications and plaque morphology. The phenomenon of quasispecies within a viral population is also discussed to reflect virulence and its implications for RNA viruses. An understanding of how such events occur will provide further evidence about whether there are molecular determinants for plaque morphology of RNA viruses or whether different plaque phenotypes arise due to the presence of quasispecies within a population. Ultimately this review gives an insight into whether the intrinsically high error rates due to the low fidelity of RNA polymerases is responsible for the variation in plaque morphology and diversity in virulence. This can be a useful tool in characterizing mechanisms that facilitate virus adaptation and evolution.



1966 ◽  
Vol 24 ◽  
pp. 322-330
Author(s):  
A. Beer

The investigations which I should like to summarize in this paper concern recent photo-electric luminosity determinations of O and B stars. Their final aim has been the derivation of new stellar distances, and some insight into certain patterns of galactic structure.



1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.



Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.



Sign in / Sign up

Export Citation Format

Share Document