scholarly journals Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Minji Kim ◽  
Tsuyoshi Goto ◽  
Rina Yu ◽  
Kunitoshi Uchida ◽  
Makoto Tominaga ◽  
...  
2005 ◽  
Vol 289 (5) ◽  
pp. R1467-R1476 ◽  
Author(s):  
C. Kay Song ◽  
Raven M. Jackson ◽  
Ruth B. S. Harris ◽  
Denis Richard ◽  
Timothy J. Bartness

Energy balance results from the coordination of multiple pathways affecting energy expenditure and food intake. Candidate neuropeptides involved in energy balance are the melanocortins. Several species, including Siberian hamsters studied here, decrease and increase food intake in response to stimulation and blockade of the melanocortin 4-receptor (MC4-R). In addition, central application of the MC3/4-R agonist melanotan-II decreases body fat (increases lipolysis) beyond that accounted for by its ability to decrease food intake. Because an increase in the sympathetic nervous system drive to white adipose tissue (WAT) is the principal initiator of lipolysis, we tested whether the sympathetic outflow circuitry from brain to WAT contained MC4-R mRNA expressing cells. This was accomplished by labeling the sympathetic outflow to inguinal WAT using the pseudorabies virus (PRV), a transneuronal retrograde viral tract tracer, and then processing the brain for colocalization of PRV immunoreactivity with MC4-R mRNA, the latter assessed by in situ hybridization. MC4-R mRNA was impressively colocalized in PRV-labeled cells (approximately greater than 60%) in many brain areas across the neuroaxis, including those typically implicated in lipid mobilization (e.g., hypothalamic paraventricular, suprachiasmatic, arcuate and dorsomedial nuclei, lateral hypothalamic area), as well as those not traditionally identified with lipolysis (e.g., preoptic area, subzona incerta of the lateral hypothalamus, periaqueductal gray, solitary nucleus). These data provide compelling neuroanatomical evidence that could underlie a direct central modulation of the sympathetic outflow to WAT by the melanocortins through the MC4-Rs resulting in changes in lipid mobilization and adiposity.


Metabolism ◽  
2012 ◽  
Vol 61 (10) ◽  
pp. 1473-1485 ◽  
Author(s):  
Danúbia Frasson ◽  
Renata Polessi Boschini ◽  
Valéria Ernestânia Chaves ◽  
Maria Emília Soares Martins dos Santos ◽  
Sílvia de Paula Gomes ◽  
...  

2010 ◽  
Vol 318 (1-2) ◽  
pp. 34-43 ◽  
Author(s):  
Timothy J. Bartness ◽  
Y.B. Shrestha ◽  
C.H. Vaughan ◽  
G.J. Schwartz ◽  
C.K. Song

1998 ◽  
Vol 275 (1) ◽  
pp. R291-R299 ◽  
Author(s):  
Maryam Bamshad ◽  
Victor T. Aoki ◽  
M. Gregory Adkison ◽  
Wade S. Warren ◽  
Timothy J. Bartness

White adipose tissue (WAT) is innervated by postganglionic sympathetic nervous system (SNS) neurons, suggesting that lipid mobilization could be regulated by the SNS [T. G. Youngstrom and T. J. Bartness. Am. J. Physiol. 268 ( Regulatory Integrative Comp. Physiol. 37): R744–R751, 1995]. A viral transsynaptic retrograde tract tracer, the pseudorabies virus (PRV), was used to identify the origins of the SNS outflow from the brain to WAT neuroanatomically. PRV was injected into epididymal or inguinal WAT (EWAT and IWAT, respectively) of Siberian hamsters and IWAT of rats. PRV-infected neurons were visualized by immunocytochemistry and found in the spinal cord, brain stem (medulla, nucleus of the solitary tract, caudal raphe nucleus, C1 and A5 regions), midbrain (central gray), and several areas within the forebrain. The general pattern of infection of WAT in both species was more similar than different and resembled that seen after PRV injections into the adrenal medulla in rats (A. M. Strack, W. B. Sawyer, J. H. Hughes, K. B. Platt, and A. D. Loewy. Brain Res. 491: 156–162, 1989). EWAT versus IWAT injected hamsters had relatively less labeling in the suprachiasmatic, dorsomedial, and arcuate nuclei. Overall, it appeared that the SNS innervation of WAT originates from the general SNS outflow of the central nervous system and therefore may play a significant role in lipid mobilization.


1998 ◽  
Vol 275 (5) ◽  
pp. R1488-R1493 ◽  
Author(s):  
Timothy G. Youngstrom ◽  
Timothy J. Bartness

The sympathetic nervous system (SNS) drive on white adipose tissue (WAT) was varied to test its effects on fat cell number (FCN) under conditions in which lipolysis would be minimized and therefore partially separable from SNS trophic effects. The inguinal subcutaneous WAT (IWAT) pad of Siberian hamsters was chosen because 1) it is innervated by the SNS, 2) short day (SD) exposure increases its SNS drive (∼250%) without proportionately increasing lipolysis, and 3) surgical denervation eliminates its SNS innervation. IWAT was either unilaterally surgically or sham denervated, while the contralateral pad was left intact. In long day- or SD-exposed hamsters (11 wk), IWAT denervation decreased norepinephrine content (∼80%) and increased fat pad mass (∼200%) and FCN (∼250 and ∼180%, respectively) compared with the contralateral intact pads, but did not affect fat cell size (FCS). The denervation-induced increased FCN in SDs occurred despite naturally occurring decreased food intake. SDs decreased IWAT FCS regardless of the surgical treatment. These results support an important role of WAT SNS innervation in the control of FCN in vivo.


1999 ◽  
Vol 276 (6) ◽  
pp. R1569-R1578 ◽  
Author(s):  
Maryam Bamshad ◽  
C. Kay Song ◽  
Timothy J. Bartness

Brown adipose tissue (BAT) plays a critical role in cold- and diet-induced thermogenesis. Although BAT is densely innervated by the sympathetic nervous system (SNS), little is known about the central nervous system (CNS) origins of this innervation. The purpose of the present experiment was to determine the neuroanatomic chain of functionally connected neurons from the CNS to BAT. A transneuronal viral tract tracer, Bartha’s K strain of the pseudorabies virus (PRV), was injected into the interscapular BAT of Siberian hamsters. The animals were killed 4 and 6 days postinjection, and the infected neurons were visualized by immunocytochemistry. PRV-infected neurons were found in the spinal cord, brain stem, midbrain, and forebrain. The intensity of labeled neurons in the forebrain varied from heavy infections in the medial preoptic area and paraventricular hypothalamic nucleus to few infections in the ventromedial hypothalamic nucleus, with moderate infections in the suprachiasmatic and lateral hypothalamic nuclei. These results define the SNS outflow from the brain to BAT for the first time in any species.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0173934 ◽  
Author(s):  
Michael F. La Fountaine ◽  
Christopher M. Cirnigliaro ◽  
Steven C. Kirshblum ◽  
Cristin McKenna ◽  
William A. Bauman

1993 ◽  
Vol 265 (2) ◽  
pp. E252-E258 ◽  
Author(s):  
W. J. Yeh ◽  
P. Leahy ◽  
H. C. Freake

Thyroid hormone regulates lipogenesis differently in rat liver and brown adipose tissue (BAT). In the hypothyroid state, lipogenesis is suppressed in liver but enhanced in BAT. Here we investigated the mechanisms underlying increased lipogenesis in hypothyroid BAT. Housing the animals at 28 degrees C decreased lipogenesis in hypothyroid BAT to euthyroid levels. Denervation resulted in a 90% reduction in lipogenesis in hypothyroid BAT such that levels were lower than in euthyroid tissue. Thyroid hormone treatment of hypothyroid rats stimulated fatty acid synthesis in denervated BAT, as in liver, but decreased it in intact BAT. Steady-state levels of mRNA encoding acetyl-CoA carboxylase, fatty-acid synthase, and spor 14 were measured in similar animals by Northern analysis. The expression of these mRNAs mirrored the lipogenic data, showing that both thyroid hormone and the sympathetic nervous system work at a pretranslational level in this tissue. These data suggest that the increased BAT lipogenesis found with hypothyroidism is mediated by the sympathetic nervous system to counter the reduction in metabolic rate in these animals.


Sign in / Sign up

Export Citation Format

Share Document