scholarly journals Superoxide dismutase SOD-1 modulates C. elegans pathogen avoidance behavior

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexander M. Horspool ◽  
Howard C. Chang
Author(s):  
Carola Petersen ◽  
Barbara Pees ◽  
Christina Martínez Christophersen ◽  
Matthias Leippe

In comparison with the standard monoxenic maintenance in the laboratory, rearing the nematode Caenorhabditis elegans on its natural microbiota improves its fitness and immunity against pathogens. Although C. elegans is known to exhibit choice behavior and pathogen avoidance behavior, little is known about whether C. elegans actively chooses its (beneficial) microbiota and whether the microbiota influences worm behavior. We examined eleven natural C. elegans isolates in a multiple-choice experiment for their choice behavior toward four natural microbiota bacteria and found that microbiota choice varied among C. elegans isolates. The natural C. elegans isolate MY2079 changed its choice behavior toward microbiota isolate Ochrobactrum vermis MYb71 in both multiple-choice and binary-choice experiments, in particular on proliferating bacteria: O. vermis MYb71 was chosen less than other microbiota bacteria or OP50, but only after preconditioning with MYb71. Examining escape behavior and worm fitness on MYb71, we ruled out pathogenicity of MYb71 and consequently learned pathogen avoidance behavior as the main driver of the behavioral change toward MYb71. The change in behavior of C. elegans MY2079 toward microbiota bacterium MYb71 demonstrates how the microbiota influences the worm’s choice. These results might give a baseline for future research on host–microbiota interaction in the C. elegans model.


2018 ◽  
Author(s):  
Rebecca S. Moore ◽  
Rachel Kaletsky ◽  
Coleen T. Murphy

AbstractThe ability to pass on learned information to progeny could present an evolutionary advantage for many generations. While apparently evolutionarily conserved1–12, transgenerational epigenetic inheritance (TEI) is not well understood at the molecular or behavioral levels. Here we describe our discovery that C. elegans can pass on a learned pathogenic avoidance behavior to their progeny for several generations through epigenetic mechanisms. Although worms are initially attracted to the gram-negative bacteria P. aeruginosa (PA14)13, they can learn to avoid this pathogen13. We found that prolonged PA14 exposure results in transmission of avoidance behavior to progeny that have themselves never been exposed to PA14, and this behavior persists through the fourth generation. This form of transgenerational inheritance of bacterial avoidance is specific to pathogenic P. aeruginosa, requires physical contact and infection, and is distinct from CREB-dependent long-term associative memory and larval imprinting. The TGF-β ligand daf-7, whose expression increases in the ASJ upon initial exposure to PA1414, is highly expressed in the ASI neurons of progeny of trained mothers until the fourth generation, correlating with transgenerational avoidance behavior. Mutants of histone modifiers and small RNA mediators display defects in naïve PA14 attraction and aversive learning. By contrast, the germline-expressed PRG-1/Piwi homolog15 is specifically required for transgenerational inheritance of avoidance behavior. Our results demonstrate a novel and natural paradigm of TEI that may optimize progeny decisions and subsequent survival in the face of changing environmental conditions.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Ippei Kotera ◽  
Nhat Anh Tran ◽  
Donald Fu ◽  
Jimmy HJ Kim ◽  
Jarlath Byrne Rodgers ◽  
...  

Understanding neural functions inevitably involves arguments traversing multiple levels of hierarchy in biological systems. However, finding new components or mechanisms of such systems is extremely time-consuming due to the low efficiency of currently available functional screening techniques. To overcome such obstacles, we utilize pan-neuronal calcium imaging to broadly screen the activity of the C. elegans nervous system in response to thermal stimuli. A single pass of the screening procedure can identify much of the previously reported thermosensory circuitry as well as identify several unreported thermosensory neurons. Among the newly discovered neural functions, we investigated in detail the role of the AWCOFF neuron in thermal nociception. Combining functional calcium imaging and behavioral assays, we show that AWCOFF is essential for avoidance behavior following noxious heat stimulation by modifying the forward-to-reversal behavioral transition rate. We also show that the AWCOFF signals adapt to repeated noxious thermal stimuli and quantify the corresponding behavioral adaptation.


2020 ◽  
Vol 31 (14) ◽  
pp. 1486-1497 ◽  
Author(s):  
Charlotte A. Kelley ◽  
Sasha De Henau ◽  
Liam Bell ◽  
Tobias B. Dansen ◽  
Erin J. Cram

H2O2 modulates RHO-1/Rho activity in the contractile tissue of the C. elegans spermatheca. Both exogenous and endogenously generated H2O2 decrease spermathecal contractility by inhibition of RHO-1 through oxidation of Cys 20. Regulation of H2O2 levels in the spermatheca depends on the activity of the cytosolic superoxide dismutase SOD-1.


2020 ◽  
Vol 123 (5) ◽  
pp. 2064-2074 ◽  
Author(s):  
Christina K. Johnson ◽  
Jesus Fernandez-Abascal ◽  
Ying Wang ◽  
Lei Wang ◽  
Laura Bianchi

Increasing evidences support that accessory cells in mechanosensors regulate neuronal output; however, the glial molecular mechanisms that control this regulation are not fully understood. We show here in Caenorhabditis elegans that specific glial Na+-K+-ATPase genes are needed for nose touch-avoidance behavior. Our data support the requirement of these Na+-K+-ATPases for homeostasis of Na+ and K+ in nose touch receptors. Our data add to our understanding of glial regulation of mechanosensors.


2020 ◽  
Author(s):  
Rebecca S. Moore ◽  
Rachel Kaletsky ◽  
Chen Lesnik ◽  
Vanessa Cota ◽  
Edith Blackman ◽  
...  

AbstractAnimals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. Previously, we discovered that C. elegans protects itself from pathogens by “reading” bacterial small RNAs and using this information to both induce avoidance and transmit memories for several generations. Here we found that these memories can be transferred to naïve animals via Cer1 retrotransposon-encoded capsids. Cer1 functions at the step of transmission of information from the germline to neurons, and is required for C. elegans’ learned avoidance ability and for mothers to pass this information on to progeny. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marcela Legüe ◽  
Blanca Aguila ◽  
Andrea Calixto

Communication with bacteria deeply impacts the life history traits of their hosts. Through specific molecules and metabolites, bacteria can promote short- and long-term phenotypic and behavioral changes in the nematode Caenorhabditis elegans. The chronic exposure of C. elegans to pathogens promotes the adaptive behavior in the host’s progeny called pathogen-induced diapause formation (PIDF). PIDF is a pathogen avoidance strategy induced in the second generation of animals infected and can be recalled transgenerationally. This behavior requires the RNA interference machinery and specific nematode and bacteria small RNAs (sRNAs). In this work, we assume that RNAs from both species co-exist and can interact with each other. Under this principle, we explore the potential interspecies RNA interactions during PIDF-triggering conditions, using transcriptomic data from the holobiont. We study two transcriptomics datasets: first, the dual sRNA expression of Pseudomonas aeruginosa PAO1 and C. elegans in a transgenerational paradigm for six generations and second, the simultaneous expression of sRNAs and mRNA in intergenerational PIDF. We focus on those bacterial sRNAs that are systematically overexpressed in the intestines of animals compared with sRNAs expressed in host-naïve bacteria. We selected diverse in silico methods that represent putative mechanisms of RNA-mediated interspecies interaction. These interactions are as follows: heterologous perfect and incomplete pairing between bacterial RNA and host mRNA; sRNAs of similar sequence expressed in both species that could mimic each other; and known or predicted eukaryotic motifs present in bacterial transcripts. We conclude that a broad spectrum of tools can be applied for the identification of potential sRNA and mRNA targets of the interspecies RNA interaction that can be subsequently tested experimentally.


PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0154156 ◽  
Author(s):  
Elaine C. Lee ◽  
Heejung Kim ◽  
Jennifer Ditano ◽  
Dacie Manion ◽  
Benjamin L. King ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document