scholarly journals Variable telomere length across post-mortem human brain regions and specific reduction in the hippocampus of major depressive disorder

2015 ◽  
Vol 5 (9) ◽  
pp. e636-e636 ◽  
Author(s):  
F Mamdani ◽  
B Rollins ◽  
L Morgan ◽  
R M Myers ◽  
J D Barchas ◽  
...  

Abstract Stress can be a predisposing factor to psychiatric disorders and has been associated with decreased neurogenesis and reduced hippocampal volume especially in depression. Similarly, in white blood cells chronic psychological stress has been associated with telomere shortening and with mood disorders and schizophrenia (SZ). However, in previous post-mortem brain studies from occipital cortex and cerebellum, no difference in telomere length was observed in depression. We hypothesized that in psychiatric disorders, stress-driven accelerated cellular aging can be observed in brain regions particularly sensitive to stress. Telomere length was measured by quantitative-PCR in five brain regions (dorsolateral prefrontal cortex, hippocampus (HIPP), amygdala, nucleus accumbens and substantia nigra (SN)) in major depressive disorder (MDD), bipolar disorder, SZ and normal control subjects (N=40, 10 subjects per group). We observed significant differences in telomere length across brain regions suggesting variable levels of cell aging, with SN and HIPP having the longest telomeres and the dorsolateral prefrontal cortex the shortest. A significant decrease (P<0.02) in telomere length was observed specifically in the HIPP of MDD subjects even after controlling for age. In the HIPP of MDD subjects, several genes involved in neuroprotection and in stress response (FKBP5, CRH) showed altered levels of mRNA. Our results suggest the presence of hippocampal stress-mediated accelerated cellular aging in depression. Further studies are needed to investigate the cellular specificity of these findings.

2021 ◽  
Vol 12 ◽  
Author(s):  
Pallab Bhattacharyya ◽  
Amit Anand ◽  
Jian Lin ◽  
Murat Altinay

About 20–40% of estimated 121 million patients with major depressive disorder (MDD) are not adequately responsive to medication treatment. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive, non-convulsive neuromodulation/neurostimulation method, has gained popularity in treatment of MDD. Because of the high cost involved in rTMS therapy, ability to predict the therapy effectiveness is both clinically and cost wise significant. This study seeks an imaging biomarker to predict efficacy of rTMS treatment using a standard high frequency 10-Hz 4- to 6-week protocol in adult population. Given the significance of excitatory and inhibitory neurotransmitters glutamate (Glu) and gamma aminobutyric acid (GABA) in the pathophysiology of MDD, and the involvement of the site of rTMS application, left dorsolateral prefrontal cortex (lDLPFC), in MDD, we explored lDLPFC Glx (Glu + glutamine) and GABA levels, measured by single voxel magnetic resonance spectroscopy (MRS) with total creatine (tCr; sum of creatine and phosphocreatine) as reference, as possible biomarkers of rTMS response prediction. Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) MRS data from 7 patients (40–74 y) were used in the study; 6 of these patients were scanned before and after 6 weeks of rTMS therapy. Findings from this study show inverse correlation between pretreatment lDLPFC Glx/tCr and (i) posttreatment depression score and (ii) change in depression score, suggesting higher Glx/tCr as a predictor of treatment efficacy. In addition association was observed between changes in depression scores and changes in Glx/tCr ratio. The preliminary findings did not show any such association between GABA/tCr and depression score.


Sign in / Sign up

Export Citation Format

Share Document