Appendix 12. Purities and Drug Content of Illicit Substances

Author(s):  
Raju Chandra ◽  
Manisha Pant ◽  
Harchan Singh ◽  
Deepak Kumar ◽  
Ashwani Sanghi

A reliable and reproducible reversed-phase high performance liquid chromatography (RP-HPLC) was developed for the quantitative determination of Remipril drug content from marketed bulk tablets. The active ingredient of Remipril separation achieved with C18 column using the methanol water mobile phase in the ratio of 40:60 (v/v). The active ingredient of the drug content quantify with UV detector at 215 nm. The retention time of Remipril is 5.63 min. A good linearity relation (R2=0.999) was obtained between drug concentration and average peak areas. The limit of detection and limit of quantification of the instrument were calculated 0.03 and 0.09 µg/mL, respectively. The accuracy of the method validation was determined 102.72% by recoveries method.


Author(s):  
Umamaheswara G. ◽  
Anudeep D.

Fluvastatin sodium is a novel compound used as cholesterol lowering agent which acts through the inhibition of 3- hydroxyl-3- methyl glutaryl- coenzyme A (HMG-Co A) reductase. It has short biological half life (1-3h) in humans required a dosing frequency of 20 to 40mg twice a day. Due to its short variable biological half life it has been developed to a sustained gastroretentive system with a natural and synthetic polymer and to study how far the natural mucilage improves the sustained activity. Floating tablets were prepared by direct compression method using in combination of natural mucilage and synthetic polymer. Prior to the preparation of tablets the physical mixtures were subjected to FT IR studies and pre compression parameters. After preparation of tablets they were subjected to various tests like swollen index, drug content, In vitro dissolution and release kinetics with pcp disso software etc. The tablets prepared by direct compression shown good in thickness, hardness and uniformity in drug content, the prepared tablets floated more than 12h except FS1 and FS2 shows 9 and 11h. Swollen index studies shows with increase in concentration of polymer the swelling increases the diffusion path length by which the drug molecule may have to travel and cause lag time. In vitro results shows that on increasing the amount of hibiscus polymer the sustain activity is increased because of its integrity and forms a thick swollen mass and reduces the erosion property of the HypromelloseK100M, kinetic studies shows that FS 1, FS2, FS3 followed the Korsmeyer peppas model and the rest FS 4, FS 5, FS6 follows the zero order respectively. Based on n value indicating that the drug release followed super case II transport mechanism due to the erosion of the polymer.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


Author(s):  
Kishan Veerabrahma ◽  
Swapna Madishetty ◽  
Muzammil Afzal Syed ◽  
Prabhakar Kandadi

Cationic nanoemulsions were reported to have increased bioavailability. The aim of present study was to prepare a cationic lipid nanoemulsion of diclofenac acid (LNEs) for improved oral bioavailability to treat arthritic conditions. The LNEs of diclofenac acid were prepared by using soya bean oil, egg lecithin, cholesterol and stearylamine. Stearylamine was used as positive charge inducer. The LNEs were processed by homogenization and ultrasonication. The formulation composition was selected based on earlier reports. The LNEs were characterized for size and zeta potential. The physical stability of LNEs was studied using autoclaving, centrifugal, desorption (dilution effect) stresses and on storage. The total drug content and entrapment efficiency were determined using HPLC. During in vivo studies in Wistar rats, the pharmacokinetic parameters of LNEs were compared with a prepared diclofenac suspension in sodium CMC mucilage. The selected formulations, F1, F2 and F3, were relatively stable during centrifugal stress, dilution stress and on storage. The drug content was found to be 2.38 ± 1.70 mg/ml for F1, 2.30 ± 0.82 mg/ml for F2, and 2.45 ± 0.66 mg/ml for F3. The entrapment efficiencies were 97.83 ± 0.53%, 97.87 ± 1.22% and 98.25 ± 0.21% for F1, F2 and F3 respectively. The cumulative percentage drug release from F1, F2 and F3 showed more release in pH 6.8 phosphate buffer than in pH 1.2 HCl. During oral bioavailability studies, the LNEs showed higher serum concentrations than a suspension. The relative bioavailability of the LNE formulations F1, F2 and F3 were found to be 2.35, 2.94 and 6.28 times that of F4 suspension and were statistically significant. Of all, the cationic lipid nanoemulsion (F3) was superior in improving bioavailability, when compared with plain emulsion (F1) and cholesterol containing LNE (F2). The study helps in designing the cationic oral nanoemulsions to improve the oral bioavailability of diclofenac.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohammad Hossain Shariare ◽  
Tonmoy Kumar Mondal ◽  
Hani Alothaid ◽  
Md. Didaruzzaman Sohel ◽  
MD Wadud ◽  
...  

Aim: EPAS (evaporative precipitation into aqueous solution) was used in the current studies to prepare azithromycin nanosuspensions and investigate the physicochemical characteristics for the nanosuspension batches with the aim of enhancing the dissolution rate of the nanopreparation to improve bioavailability. Methods: EPAS method used in this study for preparing azithromycin nanosuspension was achieved through developing an in-house instrumentation method. Particle size distribution was measured using Zetasizer Nano S without sample dilution. Dissolved azithromycin nanosuspensions were also compared with raw azithromycin powder and commercially available products. Total drug content of nanosuspension batches were measured using an Ultra-Performance Liquid Chromatography (UPLC) system with Photodiode Array (PDA) detector while residual solvent was measured using gas chromatography (GC). Results: The average particle size of azithromycin nanosuspension was 447.2 nm and total drug content was measured to be 97.81% upon recovery. Dissolution study data showed significant increase in dissolution rate for nanosuspension batch when compared to raw azithromycin and commercial version (microsuspension). The residual solvent found for azithromycin nanosuspension is 0.000098023 mg/ mL or 98.023 ppb. Conclusion: EPAS was successfully used to prepare azithromycin nanoparticles that exhibited significantly enhanced dissolution rate. Further studies are required to scale up the process and determine long term stability of the nanoparticles.


2008 ◽  
Vol 100 (1-3) ◽  
pp. 39-52 ◽  
Author(s):  
Marvin S. Swartz ◽  
H. Ryan Wagner ◽  
Jeffrey W. Swanson ◽  
T. Scott Stroup ◽  
Joseph P. McEvoy ◽  
...  

2016 ◽  
Vol 12 (4) ◽  
pp. e177-e178 ◽  
Author(s):  
Roger D. Rholdon ◽  
Tricia A. Templet
Keyword(s):  
In Utero ◽  

Sign in / Sign up

Export Citation Format

Share Document