Rapid whole-rock mineral analysis and composition mapping by synchrotron X-ray diffraction

1996 ◽  
Vol 33 (7) ◽  
pp. 245-248 ◽  
Author(s):  
Christopher Hall ◽  
Paul Barnes ◽  
Jeremy K. Cockcroft ◽  
Simon D. M. Jacques ◽  
Andrew C. Jupe ◽  
...  
Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1122
Author(s):  
Zdeněk Klika ◽  
Marta Valášková ◽  
Lucie Bartoňová ◽  
Petra Maierová

An innovative chemical quantitative mineral analysis (CQMA) was successfully tested on a cordierite-based clay ceramic sample to quantify crystalline and amorphous components. The accuracy of this method was demonstrated on an added module to the CQMA program that used oxide formulas of amorphous phases obtained by energy dispersive X-ray spectroscopy (EDS) microprobe chemical analysis. This CQMA method was tested for three variants calculated using chemical analysis, i.e., X-ray diffraction (XRD) identification of crystalline (cordierite and enstatite) and amorphous phases by scanning electron microscopy (SEM)/EDS texture and microanalyses. The test results from CQMA suggest their application possibilities as well as the limits of their utilization.


2020 ◽  
Vol 8 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Mohammed M. Sabri

Rock examinations for mining and commercial use are a vital process to save money and time. A variety of methods and approaches have been used to analyze rocks and among them, X-ray fluorescence (XRF), and X-ray diffraction (XRD) techniques proved to be an accurate method. This research was conducted to evaluate the utility and reliability of XRF and XRD to analyze the major and trace elements of rocks as well as their crystalline structures. Results showed that XRF and XRD techniques are fast and reliable, nondestructive and non-invasive analytical tools for mineral analysis, particularly for rocks. For this purpose, the analysis of 28 samples of rocks, which collected from three different places of Kurdistan region-Iraq, is reported. These places are Haybat Sultan (HS) region in Koya city as well as TaqTaq (TA) and Garmuk (GT) district nearby Koya city. Throughout this analysis, 34 major and trace elements were detected in the rocks collected from HS region, whereas forty major and trace elements were detected in the rocks collected from TA district and GT district. In addition, it was found that the structures of these rocks were crystalline in nature. This was proved through the value of diffracted angle and it was found that the majority of these rocks are oxides. The external view (the appearance) of all collected rocks was also discussed and it was found that each rock consists of a variety of minerals which will be the reason that each rock has a specific color.


1992 ◽  
Vol 18 (5) ◽  
pp. 517-529 ◽  
Author(s):  
Colin G. Ong ◽  
Randy A. Dahlgren ◽  
Kenneth K. Tanji

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Sign in / Sign up

Export Citation Format

Share Document