Intermolecular recognition and crystal packing in molybdenum and tungsten coordination polymers as deduced from powder X-ray diffraction data

2002 ◽  
pp. 566 ◽  
Author(s):  
Malcolm H. Chisholm ◽  
Paul J. Wilson ◽  
Patrick M. Woodward
Author(s):  
Giulia Novelli ◽  
Charles J. McMonagle ◽  
Florian Kleemiss ◽  
Michael Probert ◽  
Horst Puschmann ◽  
...  

The crystal structure of the monoclinic polymorph of the primary amino acid L-histidine has been determined for the first time by single-crystal neutron diffraction, while that of the orthorhombic polymorph has been reinvestigated with an untwinned crystal, improving the experimental precision and accuracy. For each polymorph, neutron diffraction data were collected at 5, 105 and 295 K. Single-crystal X-ray diffraction experiments were also performed at the same temperatures. The two polymorphs, whose crystal packing is interpreted by intermolecular interaction energies calculated using the Pixel method, show differences in the energy and geometry of the hydrogen bond formed along the c direction. Taking advantage of the X-ray diffraction data collected at 5 K, the precision and accuracy of the new Hirshfeld atom refinement method implemented in NoSpherA2 were probed choosing various settings of the functionals and basis sets, together with the use of explicit clusters of molecules and enhanced rigid-body restraints for H atoms. Equivalent atomic coordinates and anisotropic displacement parameters were compared and found to agree well with those obtained from the corresponding neutron structural models.


2014 ◽  
Vol 70 (a1) ◽  
pp. C635-C635
Author(s):  
Hidehiro Uekusa ◽  
Kotaro Fujii ◽  
Kohei Johmoto ◽  
Yuji Kikuchi ◽  
Hiroki Takahagi ◽  
...  

Diboronic acid and racemic tetrol are found to form a self-assembled macrocyclic boronic ester in the presence of appropriate guest molecules[1]. In the crystal, stacking of macrocyclic ring is observed to form infinite channel structure accommodating guest molecules by supramolecular interactions. In such structure, it is important to investigate the guest uptake and release mechanism via the crystal structure determination of the guest-free apohost. However, the apohost crystal can only be obtained by guest release process by heating, which results to form powder crystals. In this study, the structure of apohost was determined by "Structure Determination from Powder X-ray Diffraction data" technique [2][3] and the structural change by guest sorption and desorption processes were investigated. The powder X-ray diffraction pattern of the toluene inclusion crystal and the apohost crystal, which was obtained by heating of the inclusion crystal, are significantly different. However, even after the guest release, the apohost structure determined from the powder X-ray diffraction data was found to retain its crystal packing with one dimensional guest free channel. Interestingly, the apohost crystal easily absorbs the toluene and other aromatic molecules when the vapor was applied, and the crystal transforms into the guest inclusion crystal. Also, such vapor application is interesting method to switch the physicochemical property of the crystal. When naphthalene vapor was applied to the apohost crystal, naphthalene inclusion crystal was readily formed, and it became fluorescent crystal. This property was switched off by heating and guest desorption. In summary, the macrocyclic boronic ester is promising compound that forms inclusion supramolecular crystal, which can be utilized as guest storage / release, separate, protect, and other physicochemical functional material.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


1984 ◽  
Vol 140 (2-3) ◽  
pp. 202-205 ◽  
Author(s):  
Walter Morisset ◽  
Werner Wehrmeyer ◽  
Tilman Schirmer ◽  
Wolfram Bode

2021 ◽  
Author(s):  
Anna Agnieszka Hoser ◽  
Marcin Sztylko ◽  
Damian Trzybiński ◽  
Anders Østergaard Madsen

A framework for estimation of thermodynamic properties for molecular crystals via refinement of frequencies from DFT calculations against X-ray diffraction data is presented. The framework provides an efficient approach to...


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1101
Author(s):  
Anirban Karmakar ◽  
Anup Paul ◽  
Elia Pantanetti Sabatini ◽  
M. Fátima C. Guedes da Silva ◽  
Armando J. L. Pombeiro

The new coordination polymers (CPs) [Zn(μ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(μ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2−) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Yu Li ◽  
Chumin Liang ◽  
Xunzhong Zou ◽  
Jinzhong Gu ◽  
Marina V. Kirillova ◽  
...  

Three 2D coordination polymers, [Cu2(µ4-dpa)(bipy)2(H2O)]n∙6nH2O (1), [Mn2(µ6-dpa)(bipy)2]n (2), and [Zn2(µ4-dpa)(bipy)2(H2O)2]n·2nH2O (3), were prepared by a hydrothermal method using metal(II) chloride salts, 3-(2′,4′-dicarboxylphenoxy)phthalic acid (H4dpa) as a linker, as well as 2,2′-bipyridine (bipy) as a crystallization mediator. Compounds 1–3 were obtained as crystalline solids and fully characterized. The structures of 1–3 were established by single-crystal X-ray diffraction, revealing 2D metal-organic networks of sql, 3,6L66, and hcb topological types. Thermal stability and catalytic behavior of 1–3 were also studied. In particular, zinc(II) coordination polymer 3 functions as a highly active and recoverable heterogeneous catalyst in the mild cyanosilylation of benzaldehydes with trimethylsilyl cyanide to give cyanohydrin derivatives. The influence of various parameters was investigated, including a time of reaction, a loading of catalyst and its recycling, an effect of solvent type, and a substrate scope. As a result, up to 93% product yields were attained in a catalyst recoverable and reusable system when exploring 4-nitrobenzaldehyde as a model substrate. This study contributes to widening the types of multifunctional polycarboxylic acid linkers for the design of novel coordination polymers with notable applications in heterogeneous catalysis.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


Sign in / Sign up

Export Citation Format

Share Document