Nanostructured sol–gel silica thin films doped with NiO and SnO2for gas sensing applications

2004 ◽  
Vol 14 (19) ◽  
pp. 2889-2895 ◽  
Author(s):  
Alessandro Martucci ◽  
Dario Buso ◽  
Matthias De Monte ◽  
Massimo Guglielmi ◽  
Carlo Cantalini ◽  
...  
2008 ◽  
Vol 516 (7) ◽  
pp. 1499-1502 ◽  
Author(s):  
V. Musat ◽  
E. Fortunato ◽  
A.M. Botelho do Rego ◽  
R. Monteiro

2021 ◽  
Author(s):  
AJAY PRATAP SINGH GAHLOT ◽  
Ayushi Paliwal ◽  
Avinashi Kapoor

Abstract Metal oxides are excellent choices as base materials in emerging technologies in the field of Gas Sensors. In this work, an effort is made to prepare the ZnO and polypyrrole composite thin film using sol-gel technique. Nanocomposite thins film was prepared using spin coating on glass substrates for ammonia gas sensing. ZnO and polypyrrole sols were prepared using sol-gel technique and thin films were prepared by using spin coater. The nanocomposite thin films were prepared by varying the percentage composition of ZnO and Polypyrrole. Structural, optical and morphological properties of the prepared films were done using XRD, UV-Visible and SEM studies. The films were separately prepared on Inter-Digital Transducers for gas sensing applications. Gas sensing response characteristics of the prepared sensor were performed using laboratory. The sensing response of the prepared films is observed and found to be maximum (~33) for the 70%PPy+30%ZnO film at a relatively low operating temperature of about 150°C.


2014 ◽  
Vol 605 ◽  
pp. 79-82 ◽  
Author(s):  
Olivier Monfort ◽  
Tomas Roch ◽  
Maros Gregor ◽  
Leonid Satrapinskyy ◽  
Tomas Plecenik ◽  
...  

Vanadium oxide thin films are promising materials for various applications. Much attention has been devoted to thermotropic VO2(M/R) films which exhibit semiconductor-conductor phase transition at 67 °C making them excellent materials for switching applications. Non-thermotropic VO2(B) films are semiconducting and have layered structure which makes them interesting for gas sensing applications. Vanadium pentoxide films are also of great interest for photocatalytic production of H2by H2O decomposition as well as for gas sensing. In this paper the preparation of vanadium oxide thin films by using the spin coating of V2O5·nH2O aqueous gel on Si/SiO2and lime-glass substrates is reported. The as-deposited films were annealed in either air or H2/Ar atmosphere at normal or low pressure in order to prepare V2O5and VO2thin films. The obtained samples were characterized by XRD and SEM.


2012 ◽  
Vol 107 (4) ◽  
pp. 899-904 ◽  
Author(s):  
I. Fasaki ◽  
M. Kandyla ◽  
M. Kompitsas

1995 ◽  
Vol 411 ◽  
Author(s):  
J. R. Kokan ◽  
R. A. Gerhardt

ABSTRACTImpedance Spectroscopy is being used to study the humidity sensitivity of porous silica thin films. The films are processed via a colloidal sol-gel method which leaves some remnant potassium and sodium. Previous work on bulk porous silica samples processed by the same method showed that the dielectric properties and ac conductivity were very sensitive to changes in humidity. The aim of this work was to determine if the same dependencies could be found in the thin films. The capacitance, dielectric loss, and ac conductivity of the films were measured in a controlled environment chamber from 20–80% RH for frequencies ranging from 10Hz–10MHz. In addition to characterizing films with varying amounts of residual alkali ions obtained through leaching, we have also measured films that were surface doped with controlled amounts of KCl, LiCl, or NaCl. Relative humidity dependencies in the films are not as dramatic as in the bulk samples. The reasons for this behavior are not yet clear, but may be associated with the porosity, thickness, and surface area of the films.


1999 ◽  
Author(s):  
Yongxiang Li ◽  
Muralihar K. Ghantasala ◽  
Kosmas Galatsis ◽  
Wojtek Wlodarski

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 651
Author(s):  
Jakub Bronicki ◽  
Dominik Grochala ◽  
Artur Rydosz

In this paper, we describe the device developed to control the deposition parameters to manage the glancing angle deposition (GLAD) process of metal-oxide thin films for gas-sensing applications. The GLAD technique is based on a set of parameters such as the tilt, rotation, and substrate temperature. All parameters are crucial to control the deposition of nanostructured thin films. Therefore, the developed GLAD controller enables the control of all parameters by the scientist during the deposition. Additionally, commercially available vacuum components were used, including a three-axis manipulator. High-precision readings were tested, where the relative errors calculated using the parameters provided by the manufacturer were 1.5% and 1.9% for left and right directions, respectively. However, thanks to the formula developed by our team, the values were decreased to 0.8% and 0.69%, respectively.


Sign in / Sign up

Export Citation Format

Share Document