Photolysis of ferric ions in the presence of sulfate or chloride ions: implications for the photo-Fenton process

2009 ◽  
Vol 8 (7) ◽  
pp. 985 ◽  
Author(s):  
Amilcar Machulek Jr. ◽  
José Ermírio F. Moraes ◽  
Laura T. Okano ◽  
Cristina A. Silvério ◽  
Frank H. Quina
2010 ◽  
Vol 41 (6) ◽  
pp. 699-704 ◽  
Author(s):  
Yao-Hui Huang ◽  
Yu-Jen Huang ◽  
Hung-Chih Tsai ◽  
Hung-Ta Chen

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 943
Author(s):  
Kaouther Kerboua ◽  
Oualid Hamdaoui ◽  
Naoufel Haddour ◽  
Abdulaziz Alghyamah

The present paper investigates the potential of the Galvano-Fenton process as an advanced technique in terms of the simultaneous oxidation of a model pollutant, phenol, and the energy release and saving as compared to conventional electrochemical techniques, namely, Fenton, Fenton-like, and Electro-Fenton. A numerical model describing the electrochemical, electrolytic, and phenol’s mineralization reactions is presented. Simulations are conducted to predict the kinetics of ferrous and ferric ions, radicals’ formation, and phenol degradation along with released power. Parametric analysis and comparisons are also performed between the basic configuration of the Galvano-Fenton process and its upgraded version integrating a pre-immersion stage of the electrodes in the electrolyte equivalent to 25% of the total experiment’s duration. The ratio of the initial concentration of H2O2 to the concentration of the released/added Fe2+ catalyst is varied from 10 to 30. The effect of phenol concentration is inspected over the range of 0.188 to 10 mg/L as well. Compared to conventional Fenton-based techniques, the Galvano-Fenton process demonstrated a higher performance by reaching 1.34% of degradation efficiency per released J. This is associated with the generation of hydroxyl radicals of 0.047 nM/released J with initial concentrations of hydrogen peroxide and phenol of 0.187 mM and 2 µM, respectively. Moreover, the integration of the pre-immersion stage allowed the overcoming the barrier of the null degradation rate at the initial instant.


1966 ◽  
Vol 12 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Robert Houston Hamilton

Abstract The reagent described is 5.5 M in perchloric acid and 3.3 M in urea. It contains ferric ions, mercuric thiocyanate, mercuric ions (from mercuric perchlorate), and mercuric chloride. Serum dissolves directly in this reagent to yield a clear, reddish solution. When chloride ions are added, they combine first with the free mercuric ions, and then with some of the mercuric ions from the mercuric thiocyanate. Liberated thiocyanate combines with ferric ions to yield red ferric thiocyanate. The color is much more intense in the presence of strong perchloric acid than in other aqueous acid mixtures, Its intensity can be regulated at will by changing the concentration of the ferric iron. The presence of mercuric chloride in the reagent improves linearity between absorbance and chloride concentration. After the total absorbance is determined, compensation for absorbance by other substances is secured by adding mercuric ions to the photometer tube to reverse the color-producing reaction of chloride, reading the residual absorbance, and subtracting it from the total absorbance, to give a net absorbance produced by chloride alone.


Author(s):  
Hui Liu ◽  
Yingying Pu ◽  
Tong Tong ◽  
Xiaomei Zhu ◽  
Bing Sun ◽  
...  

Methyl chloride (CH3Cl) is presently understood to arise from biotic and abiotic processes in marine systems. However, the production of CH3Cl via photochemical processes has not been well studied. Here, we reported the production of CH3Cl from humic acid (HA) in sunlit saline water and the effects of the concentration of HA, chloride ions, ferric ions and pH were investigated. HA in aqueous chloride solutions or natural seawater were irradiated under an artificial light, and the amounts of CH3Cl were determined using a purge-and-trap and gas chromatography-mass spectrometry. CH3Cl was generated upon irradiation and its amount increased with increasing irradiation time and the light intensity. The formation of CH3Cl increased with an increase of HA concentration ranging from 2 mg L−1 to 20 mg L−1 and chloride ion concentration ranging from 0.02 mol L−1 to 0.5 mol L−1. The photochemical production of CH3Cl was pH-dependent, with the highest amount of CH3Cl generating near neutral conditions. Additionally, the generation of CH3Cl was inhibited by ferric ions. Finally, natural coastal seawater was irradiated under artificial light and the concentration of CH3Cl rose significantly. Our results suggest that the photochemical process of HA may be a source of CH3Cl in the marine environment.


Author(s):  
Al W. Stinson

The stratified squamous epithelium which lines the ruminal compartment of the bovine stomach performs at least three important functions. (1) The upper keratinized layer forms a protective shield against the rough, fibrous, constantly moving ingesta. (2) It is an organ of absorption since a number of substances are absorbed directly through the epithelium. These include short chain fatty acids, potassium, sodium and chloride ions, water, and many others. (3) The cells of the deeper layers metabolize butyric acid and to a lesser extent propionic and acetic acids which are the fermentation products of rumen digestion. Because of the functional characteristics, this epithelium is important in the digestive process of ruminant species which convert large quantities of rough, fibrous feed into energy.Tissue used in this study was obtained by biopsy through a rumen fistula from clinically healthy, yearling holstein steers. The animals had been fed a typical diet of hay and grain and the ruminal papillae were fully developed. The tissue was immediately immersed in 1% osmium tetroxide buffered to a pH of 7.4 and fixed for 2 hrs. The tissue blocks were embedded in Vestapol-W, sectioned with a Porter-Blum microtome with glass knives and stained with lead hydroxide. The sections were studied with an RCA EMU 3F electron microscope.


1984 ◽  
Vol 52 (03) ◽  
pp. 347-349 ◽  
Author(s):  
Daan W Traas ◽  
Bep Hoegee-de Nobel ◽  
Willem Nieuwenhuizen

SummaryNative human plasminogen, the proenzyme of plasmin (E. C. 3.4.21.7) occurs in blood in two well defined forms, affinity forms I and II. In this paper, the feasibility of separating these forms of human native plasminogen by affinity chromatography, is shown to be dependent on two factors: 1) the ionic composition of the buffer containing the displacing agent: buffers of varying contents of sodium, Tris, phosphate and chloride ions were compared, and 2) the type of adsorbent. Two adsorbents were compared: Sepharose-lysine and Sepharose-bisoxirane-lysine. Only in the phosphate containing buffers, irrespective of the type of adsorbent, the affinity forms can be separated. The influence of the adsorbent can be accounted for by a large difference in dissociation constants of the complex between plasminogen and the immobilized lysine.


2020 ◽  
Vol 61 (9) ◽  
pp. 1775-1781
Author(s):  
Li-Bin Niu ◽  
Shoichi Kosaka ◽  
Masaki Yoshida ◽  
Yusuke Suetake ◽  
Kazuo Marugame

Sign in / Sign up

Export Citation Format

Share Document